(笔记整合)跳表

一、什么是跳表?

为一个值有序的链表建立多级索引,比如每2个节点提取一个节点到上一级,我们把抽出来的那一级叫做索引或索引层。如下图所示,其中down表示down指针,指向下一级节点。以此类推,对于节点数为n的链表,大约可以建立log2n-1级索引。像这种为链表建立多级索引的数据结构就称为跳表。
在这里插入图片描述

二、跳表的时间复杂度?

1.计算跳表的高度
如果链表有n个节点,每2个节点抽取抽出一个节点作为上一级索引的节点,那第1级索引的节点个数大约是n/2,第2级索引的节点个数大约是n/4,依次类推,第k级索引的节点个数就是n/(2k)。假设索引有h级别,最高级的索引有2个节点,则有n/(2h)=2,得出h=log2n-1,包含原始链表这一层,整个跳表的高度就是log2n。

2.计算跳表的时间复杂度
假设我们在跳表中查询某个数据的时候,如果每一层都遍历m个节点,那在跳表中查询一个数据的时间复杂度就是O(m*logn)。那这个m是多少呢?如下图所示,假设我们要查找的数据是x,在第k级索引中,我们遍历到y节点之后,发现x大于y,小于后面的节点z,所以我们通过y的down指针,从第k级下降到第k-1级索引。在第k-1级索引中,y和z之间只有3个节点(包含y和z),所以,我们在k-1级索引中最多只需要遍历3个节点,以此类推,每一级索引都最多只需要遍历3个节点。所以m=3。因此在跳表中查询某个数据的时间复杂度就是O(logn)。
在这里插入图片描述

三、跳表的空间复杂度及如何优化?

1.计算索引的节点总数
如果链表有n个节点,每2个节点抽取抽出一个节点作为上一级索引的节点,那每一级索引的节点数分别为:n/2,n/4,n/8,…,8,4,2,等比数列求和n-1,所以跳表的空间复杂度为O(n)。

2.如何优化时间复杂度
如果链表有n个节点,每3或5个节点抽取抽出一个节点作为上一级索引的节点,那每一级索引的节点数分别为(以3为例):n/3,n/9,n/27,…,27,9,3,1,等比数列求和n/2,所以跳表的空间复杂度为O(n),和每2个节点抽取一次相比,时间复杂度要低不少呢。

四、高效的动态插入和删除?

跳表本质上就是链表,所以仅插作,插入和删除操时间复杂度就为O(1),但在实际情况中,要插入或删除某个节点,需要先查找到指定位置,而这个查找操作比较费时,但在跳表中这个查找操作的时间复杂度是O(logn),所以,跳表的插入和删除操作的是时间复杂度也是O(logn)。

五、跳表索引动态更新?

当往跳表中插入数据的时候,可以选择同时将这个数据插入到部分索引层中,那么如何选择这个索引层呢?可以通过随机函数来决定将这个节点插入到哪几级索引中,比如随机函数生成了值K,那就可以把这个节点添加到第1级到第K级索引中。
在这里插入图片描述

/**
 * 跳表的一种实现方法。
 * 跳表中存储的是正整数,并且存储的是不重复的。
 */
public class SkipList {

    private static final int MAX_LEVEL = 16;

    private int levelCount = 1;

    private Node head = new Node();  // 带头链表

    private Random r = new Random();

    public Node find(int value) {
        Node p = head;
        for (int i = levelCount - 1; i >= 0; --i) {
            while (p.forwards[i] != null && p.forwards[i].data < value) {
                p = p.forwards[i];
            }
        }

        if (p.forwards[0] != null && p.forwards[0].data == value) {
            return p.forwards[0];
        } else {
            return null;
        }
    }

    public void insert(int value) {
        int level = randomLevel();
        Node newNode = new Node();
        newNode.data = value;
        newNode.maxLevel = level;
        Node update[] = new Node[level];
        for (int i = 0; i < level; ++i) {
            update[i] = head;
        }

        // record every level largest value which smaller than insert value in update[]
        Node p = head;
        for (int i = level - 1; i >= 0; --i) {
            while (p.forwards[i] != null && p.forwards[i].data < value) {
                p = p.forwards[i];
            }
            update[i] = p;// use update save node in search path
        }

        // in search path node next node become new node forwords(next)
        for (int i = 0; i < level; ++i) {
            newNode.forwards[i] = update[i].forwards[i];
            update[i].forwards[i] = newNode;
        }

        // update node hight
        if (levelCount < level) { levelCount = level; }
    }

    public void delete(int value) {
        Node[] update = new Node[levelCount];
        Node p = head;
        for (int i = levelCount - 1; i >= 0; --i) {
            while (p.forwards[i] != null && p.forwards[i].data < value) {
                p = p.forwards[i];
            }
            update[i] = p;
        }

        if (p.forwards[0] != null && p.forwards[0].data == value) {
            for (int i = levelCount - 1; i >= 0; --i) {
                if (update[i].forwards[i] != null && update[i].forwards[i].data == value) {
                    update[i].forwards[i] = update[i].forwards[i].forwards[i];
                }
            }
        }
    }

    // 随机 level 次,如果是奇数层数 +1,防止伪随机
    private int randomLevel() {
        int level = 1;
        for (int i = 1; i < MAX_LEVEL; ++i) {
            if (r.nextInt() % 2 == 1) {
                level++;
            }
        }

        return level;
    }

    public void printAll() {
        Node p = head;
        while (p.forwards[0] != null) {
            System.out.print(p.forwards[0] + " ");
            p = p.forwards[0];
        }
        System.out.println();
    }

    public class Node {
        private int data = -1;
        private Node forwards[] = new Node[MAX_LEVEL];
        private int maxLevel = 0;

        @Override
        public String toString() {
            StringBuilder builder = new StringBuilder();
            builder.append("{ data: ");
            builder.append(data);
            builder.append("; levels: ");
            builder.append(maxLevel);
            builder.append(" }");

            return builder.toString();
        }
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值