(笔记整合)堆

一、如何理解“堆”?

堆是一种特殊的树。只要满足这两点,它就是一个堆。

  • 堆是一个完全二叉树;
  • 堆中每一个节点的值都必须大于等于(或小于等于)其子树中每个节点的值。
    对于每个节点的值都大于等于子树中每个节点值的堆,我们叫作“大顶堆”。对于每个节点的值都小于等于子树中每个节点值的堆,我们叫作“小顶堆”。
    在这里插入图片描述
    其中第 1 1 1个和第 2 2 2个是大顶堆,第 3 3 3个是小顶堆,第 4 4 4个不是堆。

二、如何实现一个堆?

完全二叉树比较适合用数组来存储。用数组来存储完全二叉树是非常节省存储空间的。因为我们不需要存储左右子节点的指针,单纯地通过数组的下标,就可以找到一个节点的左右子节点和父节点。
在这里插入图片描述
数组中下标为 i i i的节点的左子节点,就是下标为 i ∗ 2 i*2 i2的节点,右子节点就是下标为 i ∗ 2 + 1 i*2+1 i2+1的节点,父节点就是下标为 i 2 \frac{i}{2} 2i的节点。

1.往堆中插入一个元素
如果我们把新插入的元素放到堆的最后,堆特性被破坏,我们就需要进行调整,让其重新满足堆的特性,这个过程我们起了一个名字,就叫作堆化(heapify)。
堆化非常简单,就是顺着节点所在的路径,向上或者向下,对比,然后交换。新插入的节点与父节点对比大小。如果不满足子节点小于等于父节点的大小关系,我们就互换两个节点。一直重复这个过程,直到父子节点之间满足刚说的那种大小关系。
在这里插入图片描述
2.删除堆顶元素
假设我们构造的是大顶堆,堆顶元素就是最大的元素。当我们删除堆顶元素之后,就需要把第二大的元素放到堆顶,那第二大元素肯定会出现在左右子节点中。然后我们再迭代地删除第二大节点,以此类推,直到叶子节点被删除。
在这里插入图片描述
一个包含 n n n个节点的完全二叉树,树的高度不会超过 log ⁡ 2 n \log_{2}n log2n。堆化的过程是顺着节点所在路径比较交换的,所以堆化的时间复杂度跟树的高度成正比,也就是 O ( log ⁡ n ) O(\log n) O(logn)。插入数据和删除堆顶元素的主要逻辑就是堆化,所以,往堆中插入一个元素和删除堆顶元素的时间复杂度都是 O ( log ⁡ n ) O(\log n) O(logn)

三、如何基于堆实现排序?

可以把堆排序的过程大致分解成两个大的步骤,建堆和排序。
1.建堆
先将数组原地建成一个堆。所谓“原地”就是,不借助另一个数组,就在原数组上操作。

第一种是借助前面讲的,在堆中插入一个元素的思路。尽管数组中包含 n n n个数据,但是我们可以假设,起初堆中只包含一个数据,就是下标为 1 1 1的数据。然后,我们调用前面讲的插入操作,将下标从 2 2 2 n n n的数据依次插入到堆中。这样我们就将包含 n n n个数据的数组,组织成了堆。

第二种实现思路,跟第一种截然相反。第一种建堆思路的处理过程是从前往后处理数组数据,并且每个数据插入堆中时,都是从下往上堆化。而第二种实现思路,是从后往前处理数组,并且每个数据都是从上往下堆化。

对下标从 n 2 \frac{n}{2} 2n 开始到 1 1 1的数据进行堆化,下标是 n 2 + 1 \frac{n}{2}+1 2n+1 n n n的节点是叶子节点,我们不需要堆化。实际上,对于完全二叉树来说,下标从 n 2 + 1 \frac{n}{2}+1 2n+1 n n n的节点都是叶子节点。

建堆操作的时间复杂度是多少呢?
因为叶子节点不需要堆化,所以需要堆化的节点从倒数第二层开始。每个节点堆化的过程中,需要比较和交换的节点个数,跟这个节点的高度 k k k成正比。建堆的时间复杂度就是 O ( n ) O(n) O(n)

2.排序
建堆结束之后,数组中的数据已经是按照大顶堆的特性来组织的。数组中的第一个元素就是堆顶,也就是最大的元素。把它跟最后一个元素交换,那最大元素就放到了下标为 n n n的位置。
这个过程有点类似上面讲的“删除堆顶元素”的操作,当堆顶元素移除之后,我们把下标为 n n n的元素放到堆顶,然后再通过堆化的方法,将剩下的 n − 1 n-1 n1个元素重新构建成堆。堆化完成之后,我们再取堆顶的元素,放到下标是 n − 1 n-1 n1的位置,一直重复这个过程,直到最后堆中只剩下标为 1 1 1的一个元素,排序工作就完成了。
在这里插入图片描述
整个堆排序的过程,都只需要极个别临时存储空间,所以堆排序是原地排序算法。堆排序包括建堆和排序两个操作,建堆过程的时间复杂度是 O ( n ) O(n) O(n),排序过程的时间复杂度是 O ( n log ⁡ n ) O(n\log n) O(nlogn),所以,堆排序整体的时间复杂度是 O ( n log ⁡ n ) O(n\log n) O(nlogn)

四、思考

1.为什么快速排序要比堆排序性能好?
第一点,堆排序数据访问的方式没有快速排序友好。对于快速排序来说,数据是顺序访问的。而对于堆排序来说,数据是跳着访问的。
第二点,对于同样的数据,在排序过程中,堆排序算法的数据交换次数要多于快速排序。

2.堆排序建堆的时候,对于完全二叉树来说,下标从 n 2 + 1 \frac{n}{2}+1 2n+1 n n n的都是叶子节点,这个结论是怎么推导出来的呢?
堆是完全二叉树,求最后的非叶子节点即是求最大的叶子节点的父节点。最大的叶子节点下标为n,他的父节点为 n 2 \frac{n}{2} 2n,这是最后一个非叶子节点,所以 n 2 + 1 \frac{n}{2}+1 2n+1 n n n都是叶子节点。

public class MaxHeap2 {
    private int[] a; // 数组,从下标1开始存储数据
    private int n; // 堆可以存储的最大数据个数
    private int count; // 堆中已经存储的数据个数

    public MaxHeap2(int capacity) {
        a = new int[capacity + 1];
        n = capacity;
        count = 0;
    }

    public void insert(int data) {
        if (count >= n) {
            return; // 堆满了
        }
        ++count;
        a[count] = data;
        int i = count;
        while (i / 2 > 0 && a[i] > a[i / 2]) { // 自下往上堆化
            swap(a, i, i / 2); // swap()函数作用:交换下标为i和i/2的两个元素
            i = i / 2;
        }
    }

    private static void swap(int[] data, int i, int j) {
        int temp = data[i];
        data[i] = data[j];
        data[j] = temp;
    }

    public void removeMax() {
        if (count == 0) {
            return; // 堆中没有数据
        }
        a[1] = a[count];
        --count;
        heapify(a, count, 1);
    }

    private void heapify(int[] a, int n, int i) { // 自上往下堆化
        while (true) {
            int maxPos = i;
            if (i * 2 <= n && a[i] < a[i * 2]) { maxPos = i * 2; }
            if (i * 2 + 1 <= n && a[maxPos] < a[i * 2 + 1]) { maxPos = i * 2 + 1; }
            if (maxPos == i) { break; }
            swap(a, i, maxPos);
            i = maxPos;
        }
    }

    private void buildHeap(int[] a, int n) {
        for (int i = n / 2; i >= 1; --i) {
            heapify(a, n, i);
        }
    }

    public void sort() {
        buildHeap(a, count);
        int k = count;
        while (k > 1) {
            swap(a, 1, k);
            --k;
            heapify(a, k, 1);
        }
    }

    public void print() {
        for (int i = 1; i <= count; i++) {
            System.out.print(a[i] + " ");
        }
    }

    public static void main(String[] args) {
        MaxHeap2 heap = new MaxHeap2(8);
        heap.insert(2);
        heap.insert(123);
        heap.insert(77);
        heap.insert(195);
        heap.insert(11);
        heap.insert(33);
        heap.insert(148);
        heap.insert(74);
        heap.print();
        heap.removeMax();
        System.out.println();
        heap.print();
        heap.sort();
        System.out.println();
        heap.print();
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值