numpy的使用总结

本文详细介绍了numpy库中数组的索引和切片操作,包括取行、取列、取多行多列、广播机制、数组拼接及行列交换等。此外,还讲解了numpy的实用方法如where和clip,以及数组的复制注意事项。通过实例展示了如何高效地操控numpy数组。
摘要由CSDN通过智能技术生成

广播机制

numpy索引的使用和切片

1)取第三行

t2[2]

2)取连续的多行

t2[2:]

3)去不连续的多行

t2[ [2,8,10] ]

4)取列

t2[1,:] :表示每一列都要 ,前代表去那几列
t2[2:,:]表示取从2开始的每一个行的所有列
t2[[2,10,3],:] 表示取特定行的每一列
t2[:,0] 表示取所有行的第0列

5) 取连续的列

	t2[:,2:]取从2开始到结束的连续多列
	t2[:,[0,2]] 取不连续多列

6)取多行多列

t2[2:5,2:4]取第2行到第五行 第2列到第4列
取多个不相邻的点
t2[[0,2,2],[0,1,2]]

7)numpy的三元符

np.where(t<10,0,10) 当矩阵t中的小于10的元素赋值为0,大于10的元素赋值为10,

8)numpy的clip裁剪

t.clip(10,18) 把小于 10的元素替换成10,大于18的元素替换成18

数组的拼接

竖直拼接
np.vstack(t1,t2)
水平拼接
np.hstack(t1,t2)

数组的行列交换

行交换
t[[1,2],:]=t[[2,1],:]
列交换
t[:,[0,2]]=t[:,[2,0]]

numpy中的方法

import numpy as np
np.arrange()
np.reshape(())参数是一个元组
np.argmax(t,axis=0)
np.argmin(t,axis=1)
np.zeros((2,4))创建一个全为0的数组
np.ones((3,4))创建一个全为1的数组
np.eye(3) 创建一个对角线为1的正方形数组

numpy的注意点

1.a=b完全不复制,a和b会相互影响
2.a=b[:],视图的操作,一种切片,会创建新的对象a,但是a的数据完全由b保管,他们两个的数据变化是一致的
3.a=b.copy(),复制 a,b互相不影响

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白鼠666

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值