目录
1、应用场景
NumPy(Numerical Python)是Python的一个开源的数值计算扩展库,主要用于对大量数据进行高效存储和计算。以下是一些NumPy在实际中的应用场景:
- 图像处理: 利用NumPy的多维数组,可以方便地对图像进行处理,例如图像的缩放、转换、滤波等。
- 机器学习: NumPy的数值计算功能非常适合用来实现各种机器学习算法。例如,在通过梯度下降法进行模型训练时,可通过NumPy进行大规模矩阵运算。
- 数据分析: NumPy提供了大量的数值和统计函数,可用于数据清洗和预处理。比如,你可以使用NumPy进行数据的筛选、排序、聚合等操作。
- 科学计算: NumPy还支持广泛的科学计算,例如线性代数运算、傅立叶变换和随机数生成等。
- 信号处理: 在信号处理领域,NumPy可以作为数据分析和预处理工具,处理如音频信号数据等。
- 在图形库Matplotlib中也会使用到NumPy,包括生成与处理大量数值型数据。
总的来说,只要涉及到大量数据的数值计算和处理,很可能都会需要用到NumPy。
2、NumPy-三方库
NumPy并不是Python的标准库。但它是一个第三方库,是Python进行科学计算的基础包,也是许多Python数据处理和机器学习库的依赖库。
Python的标准库是随着Python安装包直接提供的库,如math(数学函数库),datetime(日期时间库),os(操作系统功能库)等。
NumPy则需要用户在安装Python后另行安装。常见的安装方法是使用pip(Python的包管理工具)进行安装,如在命令行中输入命令“pip install numpy”。
尽管NumPy不是Python