受欢迎的牛

[HAOI2006]受欢迎的牛

Description

  每一头牛的愿望就是变成一头最受欢迎的牛。现在有N头牛,给你M对整数(A,B),表示牛A认为牛B受欢迎。 这
种关系是具有传递性的,如果A认为B受欢迎,B认为C受欢迎,那么牛A也认为牛C受欢迎。你的任务是求出有多少头
牛被所有的牛认为是受欢迎的。
Input

  第一行两个数N,M。 接下来M行,每行两个数A,B,意思是A认为B是受欢迎的(给出的信息有可能重复,即有可
能出现多个A,B)
Output

  一个数,即有多少头牛被所有的牛认为是受欢迎的。

Sample Input

3 3

1 2

2 1

2 3
Sample Output

1
HINT

100%的数据N<=10000,M<=50000


为了练一下tarjan加缩点,所以找到了这道经典的模板题(应该算是吧)
根据题目描述,可以通过牛之间的关系建出一张有向图;
大体思路就是tarjan缩点重新建图,然后找出度为零的点,统计个数(若点是由强连通分量转化而来的,计数时要加上原来的节点数;

tarjan部分

void tarjan(int x)
{
    ++times;//时间戳
    dfn[x]=low[x]=times;
    s.push(x);
    in[x]=true;//不要忘了,标记是否在stack中
    for(int i=node[x];i;i=nxt[i])
    {
        int t=to[i];
        if(dfn[t]==0)//如果没有被拓展
        {   
            tarjan(t);
            low[x]=min(low[t],low[x]);}
        else
            if(in[t])//还在stack中,表明属于同一强连通分量
                low[x]=min(low[t],low[x]);
        }
    int now;
    if(dfn[x]==low[x])//到顶了
    {
        ff++;
        while(s.top()!=x){
            now=s.top();s.pop();
            in[now]=false;//出栈标志
            kind[now]=ff;//属于哪一个
            num[ff]++;//强连通分量中点的个数
        }
        now=s.top();s.pop();
        kind[now]=ff;
        num[ff]++;//处理栈顶
    }   
}

关于缩点

void make_map()
{
    for(int i=1;i<=n;i++)
        if(!dfn[i])
             tarjan(i); 
    for(int i=1;i<=n;i++)
        for(int j=node[i];j;j=nxt[j])
            if(kind[from[j]]!=kind[to[j]])
                add_(kind[from[j]],kind[to[j]]);//枚举原图中的每一条边,检查这条边所联通的两点是否属于同一个强连通分量,若不是,再强连通分量的的代表点连边(新建一套邻接表)

全部代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<stack>
using namespace std;
#define N 50000+100
#define K 10000+100
int nxt[N],node[K],to[N],tot=0,chu[K],from[N];
int nxt_[N],node_[K],to_[N],tot_=0;
int times=0,n,m,ff=0,num[K],kind[N],ans=0;
int dfn[K],low[K];bool in[K];stack<int> s;
void add(int x,int y){tot++,nxt[tot]=node[x],to[tot]=y,node[x]=tot;from[tot]=x;}
void add_(int x,int y){tot_++,nxt_[x]=node_[x],to_[tot]=y,node_[x]=tot_;chu[x]++;}
void tarjan(int x)
{
    ++times;
    dfn[x]=low[x]=times;
    s.push(x);
    in[x]=true;
    for(int i=node[x];i;i=nxt[i])
    {
        int t=to[i];
        if(dfn[t]==0)
        {   tarjan(t);
            low[x]=min(low[t],low[x]);}
        else
            if(in[t])
                low[x]=min(low[t],low[x]);
    }
    int now;
    if(dfn[x]==low[x])
    {
        ff++;
        while(s.top()!=x){
            now=s.top();s.pop();
            in[now]=false;
            kind[now]=ff;
            num[ff]++;
        }
        now=s.top();s.pop();
        kind[now]=ff;
        num[ff]++;
    }   
}
void make_map()
{
    for(int i=1;i<=n;i++)
    if(!dfn[i]) tarjan(i);  
    for(int i=1;i<=n;i++)
    {
        for(int j=node[i];j;j=nxt[j])
        {
            if(kind[from[j]]!=kind[to[j]])
                add_(kind[from[j]],kind[to[j]]);
        }
    }
}
void tp(){
    for(int i=1;i<=ff;i++)
        if(chu[i]==0) 
            ans+=num[i];
}
int main(){

    scanf("%d%d",&n,&m);
    int a,b;
    for(int i=1;i<=m;i++)
        scanf("%d%d",&a,&b),add(a,b);
    make_map();
    tp();
    printf("%d",ans);
    return 0;
}
#p.s邻接表不要写挂(nxt[x]=node[x],,还真敢写………….)
  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

©️2021 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值