每一头牛的愿望就是变成一头最受欢迎的牛。
现在有 N 头牛,编号从 1 到 N,给你 M 对整数 (A,B),表示牛 A 认为牛 B 受欢迎。
这种关系是具有传递性的,如果 A 认为 B 受欢迎,B 认为 C 受欢迎,那么牛 A 也认为牛 C 受欢迎。
你的任务是求出有多少头牛被除自己之外的所有牛认为是受欢迎的。
输入格式
第一行两个数 N,M;
接下来 M 行,每行两个数 A,B,意思是 A 认为 B 是受欢迎的(给出的信息有可能重复,即有可能出现多个 A,B)。
输出格式
输出被除自己之外的所有牛认为是受欢迎的牛的数量。
数据范围
1≤N≤104,
1≤M≤5×104
输入样例:
3 3
1 2
2 1
2 3
输出样例:
1
样例解释
只有第三头牛被除自己之外的所有牛认为是受欢迎的。
题解
Tarjan
#include<bits/stdc++.h>
using namespace std;
const int N = 1e4 + 10;
const int M = 5e4 + 10;
struct Edge{
int v,next,w;
}edge[M];
int head[N],cnt;
int low[N],num[N],dfn;
int sccno[N],sta[N],bcc,top;
bool in_stack[N];
int out[N],Size[N];
void add