acwing-1174. 受欢迎的牛(Tarjan)

该博客介绍了一种利用Tarjan算法解决图论问题的方法,具体场景是确定在一头牛认为另一头牛受欢迎的关系中,哪些牛被所有其他牛认为受欢迎。通过建立有向图并进行强连通分量分析,可以找出被所有牛认为受欢迎的牛的数量。代码实现包括图的构建、Tarjan算法的详细过程以及最终结果的输出。
摘要由CSDN通过智能技术生成

每一头牛的愿望就是变成一头最受欢迎的牛。

现在有 N 头牛,编号从 1 到 N,给你 M 对整数 (A,B),表示牛 A 认为牛 B 受欢迎。

这种关系是具有传递性的,如果 A 认为 B 受欢迎,B 认为 C 受欢迎,那么牛 A 也认为牛 C 受欢迎。

你的任务是求出有多少头牛被除自己之外的所有牛认为是受欢迎的。

输入格式
第一行两个数 N,M;

接下来 M 行,每行两个数 A,B,意思是 A 认为 B 是受欢迎的(给出的信息有可能重复,即有可能出现多个 A,B)。

输出格式
输出被除自己之外的所有牛认为是受欢迎的牛的数量。

数据范围
1≤N≤104,
1≤M≤5×104

输入样例:
3 3
1 2
2 1
2 3
输出样例:
1

样例解释
只有第三头牛被除自己之外的所有牛认为是受欢迎的。

题解
Tarjan

#include<bits/stdc++.h>
using namespace std;
const int N = 1e4 + 10;
const int M = 5e4 + 10;
struct Edge{
   
    int v,next,w;
}edge[M];
int head[N],cnt;
int low[N],num[N],dfn;
int sccno[N],sta[N],bcc,top;
bool in_stack[N];
int out[N],Size[N];
void add
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值