知识点:查找 数据结构:数组
题目:把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE:给出的所有元素都大于0,若数组大小为0,请返回0。
思路《剑指Offer》:这道题最直观的解法并不难,从头到尾遍历一次数组,就可以找出最小的元素,这种思路的时间复杂度是O‘(n)。但是这种思路没有利用输入的旋转数组的特性,达不到面试官的要求。
我们注意到旋转之后的数组实际上可以划分为两个排序的子数组,而且前面子数组的元素都大于或者等于后面子数组的元素;我们注意到最小的元素刚好是这两个子数组的分界线。 再排序的数组中我们可以利用二分查找的方法O(logn)的查找。本题给出的数组一定程度上是排序的,因此我们可以利用二分查找的思路来寻找这个最小的元素。
和二分查找一样,我们用两个指针分别指向数组的第一个元素和最后一个元素。
接着我们可以找到中间元素,如果该中间元素位于前面的递增子数组,那么它应该大于或者等于第一个指针指向的元素,此时最小的元素应该是位于中间元素的后面;我们可以把第一个元素指向中间元素,这样就可以缩小寻找范围;如果中间元素小于或者等于第二个指针指向的元素。此时该数组中的最小的元素应该是位于中间元素的前面,我们可以把第二个指针指向中间元素,这样也可以缩小寻找的范围。
按照上述的思路,第一个指针总是指向前面的递增数组的元素,而第二个指针总是指向后面递增的数组;最终第一个指针将指向前面子数组的最后一个元素,而第二个指针会指向后面子数组的第一个元素。也就是他们会最终指向两个相邻的元素,而第二个指针指向的元素刚好是最小的元素(这也是循环结束的条件)。
package 旋转的排序数组;
public class Solution{
public static int minNumberInRotateArray(int[]array){
if(array.length==0) {return 0;}
int low=0;
int high=array.length-1;
while(low<high){
int mid = low+(high-low)/2;
if(array[mid]>array[high]){
low = mid+1;
}else if(array[mid]==array[high]){
high--;
}else{
high=mid;
}
}
return array[high];
}
}
下面是测试程序
package 旋转的排序数组;
public class Test {
public static void main(String[] args) {
int [] array1 = {3,4,5,1,2};
System.out.println(Solution.minNumberInRotateArray(array1));
int [] array2 = {1,2,3,4,5};
System.out.println(Solution.minNumberInRotateArray(array2));
int [] array3 = {1,0,1,1,1};
System.out.println(Solution.minNumberInRotateArray(array3));
int [] array4 = {1,1,1,0,1};
System.out.println(Solution.minNumberInRotateArray(array4));
}
}