SpringBoot快速接入OpenAI大模型(JDK8)

使用AI4J快速接入OpenAI大模型

本博文给大家介绍一下如何使用AI4J快速接入OpenAI大模型,并且如何实现流式与非流式的输出,以及对函数调用的使用。

介绍

由于SpringAI需要使用JDK17和Spring Boot3,但是目前很多应用依旧使用的JDK8版本,所以使用可以支持JDK8的AI4J来接入OpenAI大模型。

AI4J是一款JavaSDK用于快速接入AI大模型应用,整合多平台大模型,如OpenAi、智谱Zhipu(ChatGLM)、深度求索DeepSeek、月之暗面Moonshot(Kimi)、腾讯混元Hunyuan、零一万物(01)等等,提供统一的输入输出(对齐OpenAi)消除差异化,优化函数调用(Tool Call),优化RAG调用、支持向量数据库(Pinecone),并且支持JDK1.8,为用户提供快速整合AI的能力。

AI4J-GitHub

快速使用

目前较多的应用场景为Spring应用,而AI4J接入SpringBoot应用也是非常简单的,本篇博文先带着大家为SpringBoot应用集成OpenAI服务,后续会介绍如何再非Spring项目中搭建。

创建SpringBoot项目

20240911230410
20240911230511
这里以JDK1.8为例创建SpringBoot2项目,当然你也可以创建JDK17、SpringBoot3。

引入AI4J依赖

<!-- Spring应用 -->
<dependency>
    <groupId>io.github.lnyo-cly</groupId>
    <artifactId>ai4j-spring-boot-stater</artifactId>
    <version>0.5.2</version>
</dependency>

如果你使用阿里源无法引入,可能是阿里云镜像还没有同步。

配置application.yml

给大家两种配置方法

第一种:使用官网的url,自己有代理
20240911231540

第二种:使用中转代理地址(或第三方中转平台)

如:https://api.openai-proxy.com
20240911231920

上面任意配置一种即可。

搭建聊天服务Controller

下面是一个小的demo演示:

@RestController
public class OpenAiController {

    // 注入Ai服务
    @Autowired
    private AiService aiService;

    @GetMapping("/chat")
    public String getChatMessage(@RequestParam String question) throws Exception {
        // 获取OpenAi的聊天服务
        IChatService chatService = aiService.getChatService(PlatformType.OPENAI);

        // 创建请求参数
        ChatCompletion chatCompletion = ChatCompletion.builder()
                .model("gpt-4o-mini")
                .message(ChatMessage.withUser(question))
                .build();


        System.out.println(chatCompletion);

        // 发送chat请求
        ChatCompletionResponse chatCompletionResponse = chatService.chatCompletion(chatCompletion);

        // 获取聊天内容和token消耗
        String content = chatCompletionResponse.getChoices().get(0).getMessage().getContent();
        long totalTokens = chatCompletionResponse.getUsage().getTotalTokens();
        System.out.println("总token消耗: " + totalTokens);

        return content;
    }
}

20240912131112

20240912094929

实现stream流式输出(打字机效果)

编写stream.html

<!DOCTYPE html>
<html>
<head>
    <meta charset="UTF-8">
    <title>Stream Example</title>
</head>
<body>
<input id="question" type="text" placeholder="输入需要提问的问题"/>

<button id="startButton">开始</button>

<div id="output"></div>


<script>
    const input = document.getElementById("question");
    const outputDiv = document.getElementById('output');
    const startButton = document.getElementById('startButton');

    async function getResponse(){
        const question = input.value;
        const resp = await fetch("/chatStream" + "?question=" + question,{
            method: 'GET'
        })

        const reader = resp.body.getReader();
        const textDecoder = new TextDecoder();
        while (1){
            const { done , value } = await reader.read()
            if(done) break;
            const str = textDecoder.decode(value);
            outputDiv.innerText += str;
            console.log(str)
        }
    }
    startButton.addEventListener("click", getResponse)
</script>
</body>
</html>

向controller中添加stream接口:

    @GetMapping("/chatStream")
    public void getChatMessageStream(@RequestParam String question, HttpServletResponse response) throws Exception {
        // 中文乱码问题
        response.setCharacterEncoding("UTF-8");

        // 获取OpenAi的聊天服务
        IChatService chatService = aiService.getChatService(PlatformType.OPENAI);

        // 创建请求参数
        ChatCompletion chatCompletion = ChatCompletion.builder()
                .model("gpt-4o-mini")
                .message(ChatMessage.withUser(question))
                .build();


        PrintWriter writer = response.getWriter();
        // 发送chat请求
        SseListener sseListener = new SseListener() {
            @Override
            protected void send() {
                writer.write(this.getCurrStr());
                writer.flush();
                System.out.println(this.getCurrStr());
            }
        };
        chatService.chatCompletionStream(chatCompletion, sseListener);
        writer.close();
        System.out.println(sseListener.getOutput());

    }

20240912151012

注意:上面只是一个简单的示例,你也可以使用其它方法,比如:

    @GetMapping("/chatStream")
    public ResponseBodyEmitter getChatMessageStream(@RequestParam String question) {
        ResponseBodyEmitter emitter = new ResponseBodyEmitter();

        // 获取OpenAi的聊天服务
        IChatService chatService = aiService.getChatService(PlatformType.OPENAI);

        // 创建请求参数
        ChatCompletion chatCompletion = ChatCompletion.builder()
                .model("gpt-4o-mini")
                .message(ChatMessage.withUser(question))
                .build();

        Executors.newSingleThreadExecutor().submit(() -> {
            try {
                SseListener sseListener = new SseListener() {
                    @Override
                    protected void send() {
                        try {
                            emitter.send(this.getCurrStr());
                            System.out.println(this.getCurrStr());  // 打印当前发送的内容
                        } catch (IOException e) {
                            emitter.completeWithError(e);
                        }
                    }
                };

                // 发送流式数据
                chatService.chatCompletionStream(chatCompletion, sseListener);

                // 完成后关闭连接
                emitter.complete();
            } catch (Exception e) {
                emitter.completeWithError(e);
            }
        });

        return emitter;
    }
实现函数调用

首先我们需要编写一个函数,以天气预报为例子:

@FunctionCall(name = "queryWeather", description = "查询目标地点的天气预报")
public class QueryWeatherFunction implements Function<QueryWeatherFunction.Request, String> {
    @Override
    public String apply(Request request) {
        final String key = "abcdefg";
        // https://api.seniverse.com/v3/weather/hourly.json?key=your_api_key&location=beijing&start=0&hours=24
        // https://api.seniverse.com/v3/weather/daily.json?key=your_api_key&location=beijing&start=0&days=5
        String url = String.format("https://api.seniverse.com/v3/weather/%s.json?key=%s&location=%s&days=%d",
                request.type.name(),
                key,
                request.location,
                request.days);


        OkHttpClient client = new OkHttpClient();

        okhttp3.Request http = new okhttp3.Request.Builder()
                .url(url)
                .get()
                .build();

        try (Response response = client.newCall(http).execute()) {
            if (response.isSuccessful()) {
                // 解析响应体
                return response.body() != null ? response.body().string() : "";
            } else {
                return "获取天气失败 当前天气未知";
            }
        } catch (Exception e) {
            // 处理异常
            e.printStackTrace();
            return "获取天气失败 当前天气未知";
        }
    }

    @Data
    @FunctionRequest
    public static class Request{
        @FunctionParameter(description = "需要查询天气的目标位置, 可以是城市中文名、城市拼音/英文名、省市名称组合、IP 地址、经纬度")
        private String location;
        @FunctionParameter(description = "需要查询未来天气的天数, 最多15日")
        private int days = 15;
        @FunctionParameter(description = "预报的天气类型,daily表示预报多天天气、hourly表示预测当天24天气、now为当前天气实况")
        private Type type;
    }

    public enum Type{
        daily,
        hourly,
        now
    }
}

其中有三个核心注解:

  • @FunctionCall:标识这个类为一个函数
  • @FunctionRequest:标识为该类为函数的请求类
  • @FunctionParameter:标识为函数的具体参数

接下来稍微修改下刚刚编写的Stream实现函数:

    @GetMapping("/chatStream")
    public void getChatMessageStream(@RequestParam String question, HttpServletResponse response) throws Exception {

        // ......

        // 创建请求参数
        ChatCompletion chatCompletion = ChatCompletion.builder()
                .model("gpt-4o-mini")
                .message(ChatMessage.withUser(question))
                .functions("queryWeather") // 这里传入刚刚我们定义的函数名称即可
                .build();

        // ......

    }

20240912152155

如果想要知道函数调用的参数,只需要在刚刚的代码中,添加下面这一行即可:

sseListener.setShowToolArgs(true);

20240912152932

更换其它平台

细心的你可能已经发现,我们在创建chatService的时候传入了PlatformType.OPENAI,如果我们想要更换其它平台,只需要更换PlatformType即可。如果你不懂,那下篇博文再详细的说说

IChatService chatService = aiService.getChatService(PlatformType.OPENAI);
其它功能

篇幅有限,其它功能使用,下篇再讲

如果您下载了本程序,但是该程序存在问题无法运行,那么您可以选择退款或者寻求我们的帮助(如果找我们帮助的话,是需要追加额外费用的)。另外,您不会使用资源的话(这种情况不支持退款),也可以找我们帮助(需要追加额外费用) 实现与openAI的对话交互,同时,实现了与前端网页以及小程序对接,前后分离项目 微信小程序是腾讯公司基于微信平台推出的一种轻量级应用形态,它无需用户下载安装即可在微信内直接使用。自2017年正式上线以来,小程序凭借其便捷性、易获取性和出色的用户体验迅速获得市场认可,并成为连接线上线下服务的重要桥梁。 小程序的核心特点包括: 零安装:用户只需通过微信扫一扫或搜索功能,即可打开和使用小程序,大大降低了用户的使用门槛和手机存储空间压力。 速度快:加载速度相较于传统的HTML5网页更快,依托于微信强大的基础设施,能够实现近乎原生应用的流畅体验。 跨平台兼容:开发者一次开发,即可在多种终端设备上运行,免除了复杂的适配工作,大大提高了开发效率。 社交属性强:小程序可以无缝嵌入微信生态,支持分享至聊天窗口、朋友圈等社交场景,有利于用户间的传播和裂变增长。 丰富接口能力:提供丰富的API接口,可调用微信支付、位置服务、用户身份识别等多种功能,方便企业进行商业服务的集成与拓展。 目前,微信小程序已经覆盖了电商购物、生活服务、娱乐休闲、教育学习、工具助手等多个领域,为数以亿计的用户提供便捷的服务入口,也为众多商家和开发者提供了新的商业模式和创业机会。随着技术的不断升级和完善,小程序已成为现代移动互联网生态中不可或缺的一部分。
### JDK 1.8环境下大模型集成的方法及兼容性解决方案 #### 集成方法概述 在JDK 1.8环境中集成大模型主要涉及以下几个方面:环境配置、依赖管理以及性能优化。由于JDK 1.8本身并不直接支持大模型的训练或推理,因此需要借助第三方框架来完成这一任务。 常见的大模型框架如TensorFlow、PyTorch等提供了Java API的支持,可以通过JNI(Java Native Interface)或者特定的SDK进行调用[^5]。具体来说,可以采用以下方式: 1. **引入必要的依赖项** 使用Maven或Gradle构建项目时,需添加对应的大模型框架的Java绑定库作为依赖项。例如,对于TensorFlow Java SDK,可以在`pom.xml`文件中加入如下内容: ```xml <dependency> <groupId>org.tensorflow</groupId> <artifactId>tensorflow</artifactId> <version>2.10.0</version> </dependency> ``` 2. **加载预训练模型** 将预先训练好的大模型存储为标准格式(如`.pb`或`.hdf5`),并通过API加载到内存中。以下是基于TensorFlow的一个简单示例代码片段: ```java import org.tensorflow.Graph; import org.tensorflow.Session; import org.tensorflow.Tensor; public class ModelLoader { public static void main(String[] args) throws Exception { try (Graph graph = new Graph()) { graph.importGraphDef(java.nio.file.Files.readAllBytes( java.nio.file.Paths.get("path/to/model.pb"))); try (Session session = new Session(graph)) { Tensor<?> result = session.runner() .feed("input", Tensor.create(new Object[][] {{"Hello"}})) .fetch("output") .run().get(0); System.out.println(result.stringVector()[0]); } } } } ``` 3. **数据预处理与后处理** 数据输入前通常需要经过标准化或其他形式的转换操作;同样地,输出也需要解析以便进一步应用。这部分逻辑可以根据具体的业务需求自行实现。 #### 兼容性考虑因素 尽管上述过程看似清晰明了,但在实际开发过程中仍需要注意若干潜在问题及其解决办法: - **JVM参数调整** 大规模机器学习任务往往伴随着较高的计算资源消耗,这可能导致默认设置下的JVM无法满足需求。此时可通过修改启动脚本中的选项加以应对,比如增大堆空间大小(`-Xmx`)、启用G1垃圾回收器(`-XX:+UseG1GC`)等措施提升整体表现[^6]。 - **线程同步机制设计** 如果多个请求同时访问同一个共享实例,则必须妥善安排好锁竞争关系以免引发死锁现象或是破坏内部状态一致性。推荐利用高级别的抽象类如`ReentrantLock`代替原始`synchronized`关键字达成目的。 - **监控工具部署** 借助内置诊断设施——飞行记录仪(JFR)[^3]跟踪应用程序运行期间的各项指标变化趋势,从而及时发现瓶颈所在并采取相应补救举措。 综上所述,在JDK 1.8平台上成功嵌入大型AI算法并非易事,但只要遵循科学合理的规划流程,并充分考虑到各种边界条件的影响作用,最终还是能够取得令人满意的效果。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值