Spring AI 1.0.0 M1版本新特性! Spring AI 1.0.0-M1这个版本相对前一个版本增加了很多新特性,比如多模态的支持、模型结果评估机制、Fluent API等等,但其中觉得最有意思的是引入了Spring AOP中的Advisor机制。
私有化部署大模型最佳解决方案 Ollama (8B)模型 企业考虑成本和数据隐私问题,会特别希望能在企业内部部署一套大模型,在企业内部直接调用,这样就能成本可控,数据也不会泄露,所以开源大模型是非常有前景的,目前来说Meta开源的Llama3是开源大模型中性能表现最好的,所以这节课先带大家来尝试使用Ollama来部署Llama3和nomic模型。这样,ollama的服务端就启动了,就可以接收模型的请求调用了,不过可能ollama部署了多个模型,所以请求调用时需要指定想要调用的是哪个模型.进入对应模型的首页,还可以选择要尝试的模型版本。
Spring AI Java程序员的AI之Spring AI(二) 在Spring AI中,如果一个Bean实现了Function接口,那么它就是一个工具函数,并且通过@Description注解可以描述该工具的作用是什么,如果工具有需要接收参数,。
one-api搭建大模型API平台 one-api接入了:● OpenAI ChatGPT 系列模型(支持 Azure OpenAI API)● Anthropic Claude 系列模型● Google PaLM2/Gemini 系列模型● Mistral 系列模型● 百度文心一言系列模型● 阿里通义千问系列模型● 讯飞星火认知大模型● 智谱 ChatGLM 系列模型● 360 智脑● 腾讯混元大模型● 百川大模型● 字节云雀大模型 (WIP)
Java程序员的AI之LangChain4j(六)从零到企业级AI开发 可以基于以上流程在自己公司内部也搭建这么一套系统,当然,可能需要针对实际情况做各种优化,接下来,让我们来针对每个组件来进一步分析其实现原理,从而能够更好的针对实际情况进行调整或扩展。
Java程序员的AI之LangChain4j(五)从零到企业级AI开发 本篇学习了什么是文本向量化、向量数据库、以及文本相似度等概念,下一篇将通过完成一个智能客服系统来掌握向量等技术在RAG中的使用,以及掌握到底什么是RAG。
Java程序员的AI之LangChain4j(四)从零到企业级AI开发 LangChain4j中的Tools机制,通过Tools机制可以通过自然语言整合大模型和系统内部功能,使得大模型这个智能大脑拥有了灵活的四肢,从而可以处理更复杂的场景,同时也感受到了自然语言编程离我们越来越近了。
Java程序员的AI之LangChain4j(二)从零到企业级AI开发 本文主要让你更加的掌握LangChain4J,举例子,以及源代码,学习了什么是AiService以及基本应用,制作了一个用户可以指定字数和标题的作家应用,同时还研究了AiService的基本工作原理和源码,其中再次提到了ChatMemory,那么下篇内容我们就来介绍到底什么是ChatMemory。