论文阅读【9】A Sentence Prediction Approach Incorporating Trial Logic Based on Abductive Learning

本文提出了一种名为SPITL的新方法,用于刑期预测。该方法结合一阶逻辑和法律知识库,更准确地识别案情要素,利用BERT进行关键要素识别,并通过逻辑推理修正结果。实验表明,SPITL在刑期预测上优于其他基线模型,尤其在数据量较小的情况下表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.概述

1.1 论文相关

  • 论文题目:一种基于反绎学习结合审判逻辑的刑期预测方法.
  • 发表时间:2022年

1.2 动机

刑期预测是司法领域一个比较重要的问题,通常学者都是通过大量的数据训练神经网络,对文本进行分类得到案情要素,然后结合案情要素预测刑期,但是在其中却忽略案情要素之间的逻辑关系,并且还有很多案情要素在数据集中都没有出现过,所以很多案情要素都无法识别出来.
因此作者就提出了一种新的逻辑模型称之为SPITL,这个逻辑模型主要体现在两个方面,第一个就是预测过程更符合审判逻辑,第二个在句子预测过程中利用了法律文本的外部知识.改算法主要分为以下几个步骤:

  • 1.创建一个法律知识库,并且将相关的法律和司法解释转换为一阶逻辑
  • 2.设计出案情要素识别算法
  • 3.结合案情之间的逻辑关系,更加精准的识别案情要素
  • 4.结合最高院的量刑指导意见进行刑期预测

2.算法

本算法主要分为三个模块:

  • 1.知识库的准备
  • 2.要素识别模块
  • 3.刑期预测模块

2.1 构建知识库

我们梳理了法规和裁判文书,总结整理出了32个案情要素,以便更好地利用法规之间的逻辑管理,法规和裁判文书之间的逻辑关系,参考量刑指南.整理出来的案情要素关系如下表
在这里插入图片描述
其中包括关键环境要素,即根据《量刑准则》对判决产生重大影响的环境要素。该比率是指元素的出现次数占所有元素出现次数的百分比。对于这些关键要素,我们按照这个表提取了法律中相应的要素,如盗窃、多重盗窃等,以及相应的句子范围。然后,我们选择用一阶逻辑关系来表示它们的逻辑结构,形成一个知识库.同时,我们在组织裁判文书数据时,观察到裁判文书数据中的关键情节元素之间存在一些潜在的逻辑关系.如您所见,法律知识库是由受法律规则和常识所限定的一阶逻辑形式组成的每个判断文件中所涉及的关键情节元素也以一阶逻辑形式出现在法律知识库中.法律知识库如下图所示:
在这里插入图片描述
图二中:法律的例子和部分法律知识库。(a)《中华人民共和国刑法》第二百六十四条的组成部分。(b)是法律知识库的一部分。
这个图显示了我们如何解析该定律并将其转换为一阶逻辑形式。图2a左为中国刑法第264条,右为对应的英文版本
蓝色部分是关键的环境要素,红色部分是所给出的量刑范围。

在2b中,在框中以上对应于将部分转换为一阶逻辑的结果,其中“分数”值是法律中规定的刑期范围。下面的部分是常识约束的一个示例,在法律解释文件中:

  • “扒窃”的定义是“在公共场所或公共交通工具上盗窃他人携带的财产”。
  • “入室盗窃”的定义是“进入一个房间,并偷偷地偷走它”。
    显然,“扒窃”和“入室盗窃”并不同时存在。通过法律规定和司法解释,将法律规则分解为与关键情况要素对应的刑期范围,为后续的量刑计算提供了参考价值。
    例如,在图2b中,如果满足第264节的第一段,则为“分数”,即句子的范围句子数在0到36个月之间(本文中的句子以月为单位),常识约束描述了关键地块元素之间的关系,对关键地块元素的后续识别具有较弱的监督作用。

2.2 关键案情要素识别

在这一部分,我使用一种基于反绎学习的方法去识别关键案情要素,如图3所示:
在这里插入图片描述
在第一部分中,我们通过案情要素抽取方法确定了判定文件中的关键情节描述,为了更好地获得案例的关键情节元素,并解决现有方法推广不足的问题,我们采用BERT预训练模型,通过多模型实验的比较来提取文本特征,该模型采用了transformer模型的双向编码器块层部分进行连接,丢弃解码器模块,使其自动具有双向编码能力和强大的特征提取能力.transformer的编码序列使用了一种selfattention机制的概念,可以同时读取整个文本序列.通过捕获全局上下文信息,建立对目标的长期依赖关系,可以提取出整个文本的更强的特征。
首先,我们需要将关键片段中的文本描述处理为BERT的标准输入形式,我们添加标记“[CLS]”作为句子的开头,而标记“[SEP]”作为整个文本的句子的结尾。初始输入为W = { W 1 , W 2 , … … , W n W_1 , W_2,……,W_n W1W2……Wn},其中 W i W_i W

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值