题目描述
给定一个含有 n 个正整数的数组和一个正整数 target 。
找出该数组中满足其和 ≥ target 的长度最小的 连续子数组 [numsl, numsl+1, …, numsr-1, numsr] ,并返回其长度。如果不存在符合条件的子数组,返回 0 。
示例 1:
输入:target = 7, nums = [2,3,1,2,4,3]
输出:2
解释:子数组 [4,3] 是该条件下的长度最小的子数组。
示例 2:
输入:target = 4, nums = [1,4,4]
输出:1
示例 3:
输入:target = 11, nums = [1,1,1,1,1,1,1,1]
输出:0
解题思路
滑动窗口法
滑动窗口法的大致逻辑
int left = 0,right = 0;
while(right < s.length()){
//增大窗口
window.add(s[right]);
right++;
//debug
System.out.println("left:" + left +",right:" + right);
while(window needs shrink){
//缩小窗口
window.remove(s[left]);
left++;
//进行窗口内数据的一系列更新
}
}
在开始套模板, 只需要思考以下四个问题:
1、 当移动 right 扩大窗口, 即加入字符时, 应该更新哪些数据?
2、 什么条件下, 窗口应该暂停扩大, 开始移动 left 缩小窗口?
3、 当移动 left 缩小窗口, 即移出字符时, 应该更新哪些数据?
4、 我们要的结果应该在扩大窗口时还是缩小窗口时进行更新?
滑动窗口法
public int minSubArrayLen_1(int target, int[] nums) {
if (nums.length == 0 || target == 0)
return 0;
if (nums.length == 1 && target == nums[0]){
return 1;
}
int ans = Integer.MAX_VALUE;
int left = 0;
int right = 0;
int sum = 0;
while (right < nums.length){
sum = sum + nums[right];
while (sum >= target){
ans = Math.min(right - left + 1,ans);
sum = sum - nums[left];
left++;
}
right++;
}
return ans == Integer.MAX_VALUE ? 0 : ans;
}
暴力法
public int minSubArrayLen(int target, int[] nums) {
int min = Integer.MAX_VALUE;
for (int i = 0; i < nums.length; i++) {
int sum = nums[i];
if (sum >= target){
return 1;
}
for (int j = i + 1; j < nums.length; j++) {
sum += nums[j];
if (sum >= target){
min = Math.min(min,j - i + 1);
break;
}
}
}
return min == Integer.MAX_VALUE ? 0 : min;
}