go设计LRU算法,实现链表和淘汰

go设计LRU算法,实现链表和淘汰

一、LRU算法
LRU(Least Recently Used,最近最少使用)算法是一种常见的页面置换算法,通常用于操作系统内存管理中,也被广泛应用在缓存系统中,如实现一个LRU Cache。该算法的核心思想是基于时间局部性原理:最近被访问的数据很有可能会在不久的将来再次被访问。

  1. 工作原理 :缓存页面置换策略:LRU算法会根据数据的访问顺序来进行置换,如果需要淘汰缓存中的数据,则会将那些最久未被访问的数据移出缓存。
  2. 使用链表记录访问顺序:典型的实现方式是使用双向链表和哈希表。双向链表用于记录数据的访问顺序,靠近头部的节点表示最近被访问的数据,靠近尾部的节点表示最久未被访问的数据;哈希表用于快速检索数据对应的节点。
  3. 数据访问时的处理:当数据被访问时,若数据已经在缓存中,LRU算法会将该数据节点移动到链表头部,表示最近被访问过;若数据不在缓存中,则新数据会被插入链表头部,并检查缓存是否已满,如果缓存已满就淘汰链表尾部数据节点。
  4. 淘汰最久未被访问的数据:当需要淘汰数据时,LRU算法会移除链表尾部节点,最近被访问的数据节点会一直保留在链表头部。

二、源码实现

这个示例代码展示了一个基本的 LRU 缓存实现,使用双向链表(list.List)和哈希表(map)来存储数据。LruCache 结构体包含了一个固定容量的哈希表和双向链表,用于实现 LRU 缓存的基本功能。Get 方法用于获取缓存中的值,Set 方法用于插入或更新缓存,并根据 LRU 算法保持最近访问的元素在链表头部。

在这个示例中,LRU 缓存的容量为 3,当缓存中的元素个数超过容量时,会使用 LRU 策略删除最近最少使用的元素。可以根据实际需求对此基本示例进行扩展和优化。

package main

// 链表
type list struct {
	key   string
	value string
	prev  *list
	next  *list
}

// 存储数据源
type LruCache struct {
	cap   int
	cache map[string]*list
	head  *list
	tail  *list
}

func getLru(cap int) (lru LruCache) {
	var head, tail *list
	head = new(list)
	tail = new(list)
	head.next = tail
	tail.prev = head
	return LruCache{
		cap:   cap,
		cache: make(map[string]*list),
		head:  head,
		tail:  tail,
	}
}

func (t *LruCache) Set(k, v string) {
	if val, ok := t.cache[k]; ok {
		//存在直接更新
		t.cache[k].key = k
		t.cache[k].value = v
		//删除当前位置
		t.remove(val)
		//移到最前面
		t.moveToHead(val)
	} else {
		if len(t.cache) >= t.cap {
			//超如容量需要删除最后一个
			delete(t.cache, t.tail.prev.key)
			t.remove(t.tail.prev)
		}
		newList := &list{key: k, value: v}
		t.cache[k] = newList
		//移到最前面
		t.moveToHead(newList)
	}
}

func (t *LruCache) Get(k string) string {
	if val, ok := t.cache[k]; ok {
		//删除当前位置
		t.remove(val)
		//移到最前面
		t.moveToHead(val)
		return val.value
	}
	return "-1"
}

func (t *LruCache) remove(l *list) {
	//剪短上层联系
	l.prev.next = l.next
	//剪短下层联系
	l.next.prev = l.prev
}

func (t *LruCache) moveToHead(l *list) {
	//移到第一个节点
	l.prev = t.head
	//原有第一个节点改为当前节点的下一个
	l.next = t.head.next
	t.head.next.prev = l
	t.head.next = l
}

func main() {
	cache := getLru(3)
	cache.Set("1", "1")
	cache.Set("2", "2")
	cache.Set("3", "3")
	cache.Set("4", "4")
	cache.Set("5", "5")
	cache.Get("3")
	cache.Get("5")
	cache.Get("2")
}


  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: LRU (Least Recently Used) 算法是一种常用于缓存淘汰策略的算法,它的原理是根据数据的访问时间来进行淘汰,即最近最少使用的数据优先被淘汰。在实现 LRU 算法时,我们通常使用一个双向链表和一个哈希表来存储数据。 链表中的每个节点用来存储一个数据,节点包含三个属性:key,value 和 prev、next 指针,其中 key 和 value 分别表示数据的键和值,prev 和 next 指针用来指向前驱和后继节点。 哈希表用来存储每个数据在链表中的位置,键为数据的键,值为链表中对应节点的指针。这样,在对数据进行查找和删除时,我们只需要在哈希表中查找对应节点的指针,就可以快速地访问到链表中的数据。 每次访问数据时,我们需要将其移到链表的末尾,这样就可以保证链表的头部始终为最近最少使用的数据。当链表已满时,我们需要删除链表头部的数据,也就是最近最少使用的数据。 总的来说,实现 LRU 算法需要以下几个步骤: 1. 初始化一个双向链表和一个哈希表; 2. 每次访问数据时,将其移到链表的末尾; 3. 当链表已满时,删除链表头部的数据; 4. 在链表和哈希表中添加、删除或查找数据时,需要保证两者的一致性。 ### 回答2: Java LRU(最近最少使用)算法可以通过链表实现LRU算法是一种用于缓存淘汰的策略,它根据数据的使用情况来决定哪些数据将被保留在缓存中,哪些数据将被淘汰。在LRU算法中,最近最少使用的数据会被选择淘汰。 在Java中,我们可以使用链表实现LRU算法链表的每个节点代表一个数据,节点的顺序表示数据的使用顺序,最近使用的数据位于链表的头部,最近最少使用的数据位于链表的尾部。 实现LRU算法链表需要支持两个操作:插入和删除。当有新的数据被访问时,我们首先在链表中查找该数据。如果数据已经存在于链表中,我们将其从原来的位置删除,并将其插入到链表的头部。如果数据不存在于链表中,我们将其插入到链表的头部。当链表的大小达到缓存的容量上限时,我们需要删除链表尾部的节点。 通过链表实现LRU算法有一定的优势。插入和删除操作的时间复杂度为O(1),即常数时间。同时,由于链表的特性,我们可以轻松地调整节点的顺序,以实现LRU算法的功能。 总之,通过链表实现Java LRU算法是一种简单有效的方法。它通过维护一个有序的链表结构来实现数据的使用顺序,并且支持快速的插入和删除操作。这种实现方式可以用于缓存等需要快速访问和淘汰数据的场景,提高系统性能和效率。 ### 回答3: LRU(Least Recently Used,最近最少使用)算法是一种常用的缓存替换算法,用于解决缓存空间有限的情况下,有效地管理缓存中的数据。 在实现LRU算法时,通常使用双向链表和HashMap结合的方式。 双向链表是用于记录数据的访问顺序,最近访问的数据位于链表头部,而最久未访问的数据位于链表尾部。每当有数据被访问时,如果该数据在链表中已存在,则将该数据移到链表头部;如果数据不存在,则将该数据添加到链表头部。当缓存满时,需要替换最久未访问的数据,即链表尾部的数据。 HashMap用于快速定位某个数据是否在缓存中,并记录该数据在双向链表中的位置。当需要访问数据时,首先在HashMap中查找是否存在该数据,若存在,则将该数据移到链表头部,同时更新HashMap中该数据对应的位置;若不存在,则将该数据添加到链表头部,并在HashMap中添加该数据的映射。 通过以上的链表和HashMap的结合,可以实现LRU算法。当数据被访问时,可以在O(1)的时间复杂度内完成查找和移动操作,从而提高算法的效率。 总结起来,LRU算法通过双向链表和HashMap的结合,实现了对缓存中数据的高效管理,提高了数据访问效率。这种算法在很多场景下都有广泛的应用,比如操作系统的页面置换、数据库查询优化等。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值