Hadoop的IO处理

1.HDFS数据完整性

HDFS会写入所有数据的计算校验和,并对正在读取的数据进行校验,默认校验方式是RCR-32。

不只是读写数据时会进行校验,datanode也会在后台线程中运行DataBlockScanner进行校验,定期检查数据的缺失情况。

客户端读写数据时,发现数据损坏了,向namenode汇报,抛出ChecksumException,namenode将该datanode上的数据转移到其他的datanode,最后删除该损坏的数据块。

在使用open()方法读取文件之前,将false传送给FileSystem对象的setVerfyChecksum()方法,即可以禁止校验和验证,如果你读取的文件时损坏的,那么在文件删除之前,你还可以恢复部分数据,以免该datanode转移数据失败后直接被删除。

2.LocalFileSysytem

localfileSystem继承于checkFileSysytem,
checkFileSysytem继承于FilterFileSystem,
FilterFileSystem继承于FileSysytem。

localfileSystem可以对文件进行校验。

3.几种压缩方式

在这里插入图片描述
在这里插入图片描述

4.读取压缩数据

在这里插入图片描述
codecClassName加载压缩格式。

5.对文件进行压缩

在这里插入图片描述
在这里插入图片描述

6.压缩解压线程池

在这里插入图片描述
在这里插入图片描述

7.压缩文件的处理

hdfs中每片数据128m,1GB的gzip压缩文件分成8片,但只会被一个马匹处理,因为压缩文件无法切片以后对每一片处理。

但是我们处理大文件时一定要确保数据格式可以被切片:
在这里插入图片描述

8.mapredeuce 的结果文件进行压缩

在这里插入图片描述
在这里插入图片描述

9.定制comparator和WritableComparable接口

下面的程序实现了:对每个id相同的商品中挑选出价格最贵的那个。

这里map和reduce期间经过了两个过程:
1.因为实现了WritableComparable接口,故会对其排序
2.因为实现了WritableComparator接口,会将相同的kay放在一起

查找源码可以发现,WritableComparator调用compare方法实质是调用WritableComparable接口的comareTo方法进行比较。

package com.qianliu.bigdata.mr.secondarysort;

import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;

/**
 * 利用reduce端的GroupingComparator来实现将一组bean看成相同的key,相当于自定义shuffle的分组规则
 * @author
 *
 */
public class ItemidGroupingComparator extends WritableComparator {

	//注册OrderBean,以及制定需要让框架做反射获取实例对象
	protected ItemidGroupingComparator() {
		super(OrderBean.class, true);
	}
	

	@Override
	public int compare(WritableComparable a, WritableComparable b) {
		OrderBean abean = (OrderBean) a;
		OrderBean bbean = (OrderBean) b;
		
		/*比较两个bean时,指定只比较bean中的orderid,id相等则认为是相等的,
		其实key早就被拼接生成了id+amount的形式,如果此地方不重写此方法,他默认比较key
		 */
		return abean.getItemid().compareTo(bbean.getItemid());
		
	}

}
package com.qianliu.bigdata.mr.secondarysort;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.SequenceFile;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;


public class OrderBean implements WritableComparable<OrderBean>{

	private Text itemid;//商品id
	private DoubleWritable amount;//商品价格double类型

	public OrderBean() {
	}

	public OrderBean(Text itemid, DoubleWritable amount) {
		set(itemid, amount);

	}

	public void set(Text itemid, DoubleWritable amount) {

		this.itemid = itemid;
		this.amount = amount;

	}



	public Text getItemid() {
		return itemid;
	}

	public DoubleWritable getAmount() {
		return amount;
	}



	@Override
	public int compareTo(OrderBean o) {
		int cmp = this.itemid.compareTo(o.getItemid());//compareTo是比较前后Text是否相同的一个方法,相同则返回0
		if (cmp == 0) {
			/*compareTo是DoubleWritable比较前后大小的方法,后面的大为-1
			 *最前面加一个“负号”是因为return的值为正,最后job输出时列出该数据排在前面,加符号使得大数排序后在后
			 */
			cmp = -this.amount.compareTo(o.getAmount());
		}
		return cmp;
	}

	@Override
	public void write(DataOutput out) throws IOException {
		out.writeUTF(itemid.toString());
		out.writeDouble(amount.get());
		
	}

	@Override
	public void readFields(DataInput in) throws IOException {
		String readUTF = in.readUTF();
		double readDouble = in.readDouble();
		
		this.itemid = new Text(readUTF);
		this.amount= new DoubleWritable(readDouble);
	}


	@Override
	public String toString() {
		return itemid.toString() + "\t" + amount.get();
	}


}
package com.qianliu.bigdata.mr.secondarysort;

import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.mapreduce.Partitioner;


public class ItemIdPartitioner extends Partitioner<OrderBean, NullWritable>{

	@Override
	public int getPartition(OrderBean bean, NullWritable value, int numReduceTasks) {
		//相同id的订单bean,会发往相同的partition
		//而且,产生的分区数,是会跟用户设置的reduce task数保持一致
		return (bean.getItemid().hashCode() & Integer.MAX_VALUE) % numReduceTasks;
		
	}

}

package com.qianliu.bigdata.mr.secondarysort;

import java.io.IOException;

import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import com.sun.xml.bind.v2.schemagen.xmlschema.List;

/**
 * 
 * @author duanhaitao@itcast.cn
 *
 */
public class SecondarySort {
	
	static class SecondarySortMapper extends Mapper<LongWritable, Text, OrderBean, NullWritable>{
		
		OrderBean bean = new OrderBean();
		
		@Override
		protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {

			String line = value.toString();
			String[] fields = StringUtils.split(line, ",");
			
			bean.set(new Text(fields[0]), new DoubleWritable(Double.parseDouble(fields[2])));

			context.write(bean, NullWritable.get());
			
		}
		
	}
	
	static class SecondarySortReducer extends Reducer<OrderBean, NullWritable, OrderBean, NullWritable>{
		//这里map和reduce期间经过了两个过程:
		//1.因为实现了WritableComparable接口,故会对其排序
		//2.因为实现了WritableComparator接口,会将相同的kay放在一起
		
		//到达reduce时,相同id的所有bean已经被看成一组,且金额最大的那个一排在第一位
		@Override
		protected void reduce(OrderBean key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException {
			context.write(key, NullWritable.get());
		}
	}
	
	
	public static void main(String[] args) throws Exception {
		
		Configuration conf = new Configuration();
		Job job = Job.getInstance(conf);
		
		job.setJarByClass(SecondarySort.class);
		
		job.setMapperClass(SecondarySortMapper.class);
		job.setReducerClass(SecondarySortReducer.class);
		
		
		job.setOutputKeyClass(OrderBean.class);
		job.setOutputValueClass(NullWritable.class);
		
		FileInputFormat.setInputPaths(job, new Path("E:\\IDEA\\MapReduceLocalhost\\secondarysort\\input"));
		FileOutputFormat.setOutputPath(job, new Path("E:\\IDEA\\MapReduceLocalhost\\secondarysort\\output"));

		//在此设置自定义的Groupingcomparator类 
		job.setGroupingComparatorClass(ItemidGroupingComparator.class);
		//在此设置自定义的partitioner类
		job.setPartitionerClass(ItemIdPartitioner.class);
		
		job.setNumReduceTasks(2);
		
		job.waitForCompletion(true);
		
	}

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值