es安装启动步骤:
首先解压es,打开 config文件夹下
elasticsearch.yml进行配置一下信息
cluster.name: xuecheng
node.name: xc_node_1
network.host: 0.0.0.0
http.port: 9200
transport.tcp.port: 9300
node.master: true
node.data: true
#discovery.zen.ping.unicast.hosts: ["0.0.0.0:9300", "0.0.0.0:9301", "0.0.0.0:9302"]
discovery.zen.minimum_master_nodes: 1
bootstrap.memory_lock: false
node.max_local_storage_nodes: 2
path.data: D:\xcEdu_Tools\ElasticSearch\elasticsearch-6.2.1\data
path.logs: D:\xcEdu_Tools\ElasticSearch\elasticsearch-6.2.1\logs
http.cors.enabled: true
http.cors.allow-origin: /.*/
常用的配置项如下:
cluster.name:
配置elasticsearch的集群名称,默认是elasticsearch。建议修改成一个有意义的名称。
node.name:
节点名,通常一台物理服务器就是一个节点,es会默认随机指定一个名字,建议指定一个有意义的名称,方便管理一个或多个节点组成一个cluster集群,集群是一个逻辑的概念,节点是物理概念,后边章节会详细介绍。
path.conf: 设置配置文件的存储路径,tar或zip包安装默认在es根目录下的config文件夹,rpm安装默认在/etc/
elasticsearch path.data: 设置索引数据的存储路径,默认是es根目录下的data文件夹,可以设置多个存储路径,用逗号隔开。 path.logs: 设置日志文件的存储路径,默认是es根目录下的logs文件夹 path.plugins: 设置插件的存放路径,默认是es根目录下的plugins文件夹
bootstrap.memory_lock: true 设置为true可以锁住ES使用的内存,避免内存与swap分区交换数据。
network.host: 设置绑定主机的ip地址,设置为0.0.0.0表示绑定任何ip,允许外网访问,生产环境建议设置为具体的ip。
http.port: 9200 设置对外服务的http端口,默认为9200。
transport.tcp.port: 9300 集群结点之间通信端口
node.master: 指定该节点是否有资格被选举成为master结点,默认是true,如果原来的master宕机会重新选举新的master。 node.data: 指定该节点是否存储索引数据,默认为true。
discovery.zen.ping.unicast.hosts: ["host1:port", "host2:port", "..."] 设置集群中master节点的初始列表。
discovery.zen.ping.timeout: 3s 设置ES自动发现节点连接超时的时间,默认为3秒,如果网络延迟高可设置大些。
discovery.zen.minimum_master_nodes:
主结点数量的最少值 ,此值的公式为:(master_eligible_nodes / 2) + 1 ,比如:有3个符合要求的主结点,那么这里要设置为2。
node.max_local_storage_nodes:单机允许的最大存储结点数,通常单机启动一个结点建议设置为1,开发环境如果单机启动多个节点可设置大于1.
配置完成后需要配置jvm.options中设置 -Xms和-Xmx:
1) 两个值设置为相等
2) 将 Xmx 设置为不超过物理内存的一半。
启动
监控es有一个可视化插件 需要配合node.js启动使用
解压
打开文件夹 按住shift键启动cmd 输入命令 npm run start 启动
启动成功打开界面
安装Ik分词器插件步骤:
从GIT中下载解压分词器压缩包,将文件拷贝到es文件下的插件目录下随意建一个目录放入目录中重启
快速入门篇
创建索引 简单做法:(分片数单机操作的话1就好,副本0就好)
URL版本操作:
创建映射URL版本:
http://localhost:9200/xc_course/doc/_mapping(post请求)
xc_course-->索引名称
doc-->必须写的东东
_mapping-->声明要创建映射
请求体:(json)
{
"properties": {
"name": {
"type": "text"
},
"description": {
"type": "text"
},
"studymodel": {
"type": "keyword"
}
}
}
创建文档(插入数据)
http://localhost:9200/xc_course/doc/(post请求)
请求体:(json 根据映射来进行数据插入)
{
"name":"Bootstrap开发框架",
"description":"Bootstrap是由Twitter推出的一个前台页面开发框架,在行业之中使用较为广泛。此开发框架包含了大量的CSS、JS程序代码,可以帮助开发者(尤其是不擅长页面开发的程序人员)轻松的实现一个不受浏览器限制的精美界面效果。",
"studymodel":"201001"
}
搜索:
查询结果json各代表的含义:
took:本次操作花费的时间,单位为毫秒。
timed_out:请求是否超时
_shards:说明本次操作共搜索了哪些分片
hits:搜索命中的记录
hits.total : 符合条件的文档总数 hits.hits :匹配度较高的前N个文档
hits.max_score:文档匹配得分,这里为最高分
_score:每个文档都有一个匹配度得分,按照降序排列。
_source:显示了文档的原始内容。
配置自定义分词:
开始测试
映射中需要注意的几点小问题:
映射创建后不允许更新(大白话就是创建后如果想修改其中的类型或名称是不允许修改的只能删除之后重新创建)
映射如果想删除的话需要先删除索引才能删除映射
映射创建时要指定好分词器:(案例如下)
对于ik分词器建议是索引时使用ik_max_word将搜索内容进行细粒度分词,搜索时使用ik_smart提供搜索精确性
通过index属性指定是否索引。默认为index=true,即要进行索引,只有进行索引才可以从索引库搜索到。但是也有一些内容不需要索引,比如:商品图片地址只被用来展示图片,不进行搜索图片,此时可以将index设置为false。
删除索引,重新创建映射,将pic的index设置为false,尝试根据pic去搜索,结果搜索不到数据
{
"properties": {
"name": {
"type": "text",
"analyzer":"ik_max_word",
"search_analyzer":"ik_smart"
},
"description": {
"type": "text",
"analyzer":"ik_max_word",
"search_analyzer":"ik_smart"
},
"pic":{
"type":"text",
"index":false
}
}
}
映射中的数据类型:
keywords:精确查询的数据类型
text:普通文本
date:日期类型,它的指定插入数据时需要严格按照给定的格式进行插入
例如:"format": "yyyy‐MM‐dd HH:mm:ss||yyyy‐MM‐dd||epoch_millis"
数值类型:范围越小越好,查询效率会越高