Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks

本文提出了一种树结构的LSTM网络,即Tree-LSTM,用于增强序列任务中的语义表示。相比传统的线性LSTM,Tree-LSTM允许信息通过更丰富的网络拓扑结构传播,包括Child-Sum Tree-LSTM和N-ary Tree-LSTM两种变体。在情感分类和句子对的语义相关度评估中,Tree-LSTM表现优于现有系统。
摘要由CSDN通过智能技术生成

代码位置
论文原文

研究意义

LSTM具有超时保存序列信息的优良性能,同时更复杂的计算单元,因此在众多的序列任务中取得了很好的效果,仅仅基于LSTM结构至今仍然是一个线性链。然而,自然语言表现出自然地将单词与短语组合在一起的句法性质。本文提出了树结构的LSTM,将LSTM推广到树状的网络拓扑结构,Tree-LSTMs在预测两个句子的语义相关性和电影评论中进行情感分类两个方面上进行实验,证明都要优于现有的系统。
如图所示,上面的为Lstm的线性,下面图是Lstm的树形:
在这里插入图片描述

提出模型

LSTM

循环神经网络(RNNs)能够通过在隐藏状态向量ht循环应用转移函数来处理任意长度的输入序列。在每一时刻t t,其隐藏态ht是一个由当前时刻的输入向量xt 和上一时刻的隐藏态ht−1构成的函数。例如,输入向量xt可以是文本中第t tt个单词的向量表示。隐藏态ht能够被解释为t时刻所观测到的由单词所组成的句子的多维分布式表示。运用的相关公式如下所示:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值