原根【OI Pharos 6.1.4】

原根【OI Pharos 6.1.4】

前置知识:素数筛,阶,欧拉函数,欧拉定理

1 原根

g , m ∈ N + , 且 g ⊥ m ; 若 o r d m g = φ ( m ) , g,m\in\mathbb N^+,且 g\bot m;若 \mathrm{ord}_mg=\varphi(m), g,mN+gmordmg=φ(m)则称 g是模 m的原根。

(我yy的定义)对于所有 k ∈ N 且 k ≤ φ ( p ) k \in N 且 k \leq \varphi(p) kNkφ(p),均有 i ∈ [ 0 , φ ( p ) ] 且 i ∈ N {i \in[0,\varphi(p)] 且 i\in N} i[0,φ(p)]iN使得 g i ≡ k   ( m o d   p ) g^i \equiv k \ (mod\ p) gik (mod p)成立

即就是模p意义下原根g的幂次可以在模p意义下表示所有小于p的整数

2 原根存在定理

模m意义下有原根的充要条件是 m ∈ { 2 , 4 , p k , 2 p k }     ( φ ( p ) = p − 1 , k ∈ N ) m \in \{2,4,p^k,2p^k\} \ \ \ (\varphi(p) = p - 1,k \in N) m{2,4,pk,2pk}   (φ(p)=p1kN)

3 原根判定定理

若 g 为模 m 的原根,则对于任意$ \varphi(m) $的质因子 p,必有 g φ ( m ) p ≢ 1 ( m o d m ) g^{\frac{\varphi(m)}{p}}\not\equiv 1 \pmod m gpφ(m)1(modm)

因为欧拉定理 g φ ( m ) ≡ 1 ( m o d m ) g^{\varphi(m)} \equiv 1\pmod m gφ(m)1(modm),所以如果有 g i ≡ 1 ( m o d m ) g^i\equiv 1 \pmod m gi1(modm),则一定有 i ∣ φ ( m ) i\mid\varphi(m) iφ(m)

4 性质

  1. 设 g 为模 m 的原根,则集合 S = { g s ∣ 1 ≤ s ≤ φ ( m ) , s ⊥ φ ( m ) } S=\{g^{s} \mid 1 \leq s \leq \varphi(m),s\bot\varphi(m)\} S={gs1sφ(m),sφ(m)}给出模 m m m 的全部原根。
  2. m m m 的原根有 φ ( φ ( m ) ) \varphi(\varphi(m)) φ(φ(m)) 个。
  3. 最小原根是不大于 m 4 \sqrt[4]{m} 4m 级别的

5 求原根

  • 判定对于 n n n原根是否存在

  • 求最小原根

    • i i i不与 n n n互质,则肯定不是原根
    • 对于 φ ( n ) \varphi(n) φ(n)的每一个质因数,测试是否有 i φ ( m ) p ≢ 1 ( m o d m ) i^{\frac{\varphi(m)}{p}}\not\equiv 1 \pmod m ipφ(m)1(modm)
      • 否则i不是原根
      • 若对于所有质因数均满足,则找到原根g
  • 求所有原根

    • 枚举g的s次方,如果 s ⊥ φ ( n ) s\bot\varphi(n) sφ(n),则是 g s g^s gs是原根
    • 找到共计 φ ( φ ( n ) ) \varphi(\varphi(n)) φ(φ(n))个原根为止

6 模板

bool exist(int x){//判定原根存在
	if(x == 2 || x == 4) return 1;
	if(x % 2 == 0) x /= 2;
	for(int i = 2 ; prime[i] <= x ; i ++){
		if(x % prime[i] == 0){
			while(x % prime[i] == 0) x /= prime[i];
			return x == 1;
		}
	}
	return 0;
}
void getroot(int n){
    if(exist(n)){//求最小原根
		ans.clear();
		primefactor.clear();
		divide(phi[n]);//分解质因数
		int g;
		for(int i = 1 ; ; i ++){
			bool is = 1;
			if(exgcd(i,n) != 1) continue;
			for(int j = 0 ; j < primefactor.size() ; j++){
				if(ksm(i,phi[n]/primefactor[j],n) == 1){//快速幂
					is = 0;
					break;
				}
			}
			if(is){
				g = i;
				break;
			}
		}
        //求所有原根
		int power = 1;
		for(int s = 1 ; ans.size() < phi[phi[n]] ; s ++){
			power = power * g % n;
			if(exgcd(phi[n],s) == 1) roots.push_back(power);
		}
}
		
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值