克罗内克函数Kronecker Delta
1 定义
δ
i
j
=
{
0
if
i
≠
j
,
1
if
i
=
j
.
\delta _{{ij}}={\begin{cases}0&{\text{if }}i\neq j,\\1&{\text{if }}i=j.\end{cases}}
δij={01if i=j,if i=j.
也可记作:
δ
i
j
=
[
i
=
j
]
{\displaystyle \delta _{ij}=[i=j]\,}
δij=[i=j]
比如单位矩阵可以描述为,矩阵
I
\mathbf{I}
I满足
I
i
j
=
δ
i
j
{\displaystyle I_{ij}=\delta _{ij}}
Iij=δij
向量内积可以描述为
a
⋅
b
=
∑
i
,
j
=
1
n
a
i
δ
i
j
b
j
\mathbf{a} \cdot \mathbf{b} = \sum_{i,j=1}^{n}a_{i}\delta _{ij}b_{j}
a⋅b=i,j=1∑naiδijbj
2 推论
2.1 Equivalence Property
δ ( i , j ) = δ ( i − j , 0 ) \delta(i,j) = \delta(i - j,0) δ(i,j)=δ(i−j,0)
2.2 Sifting Property
当
j
∈
Z
j ∈ ℤ
j∈Z,有
∑
i
=
−
∞
∞
a
i
δ
i
j
=
a
j
.
\sum_{i=-\infty}^\infty a_i \delta_{ij} =a_j.
i=−∞∑∞aiδij=aj.