pytorch --tensorboardX可视化的使用

直接上中点
当然了,我们想要在pytorch中使用tensorboardX你需要先安装这些依赖
我在安装的过程中也遇到了一些小问题,基本上都是一些安装依赖版本的问题。

pip install tensorflow==1.13.2

因为tensorboardX是tensorflow下的一个依赖,所以安装这个需要先安装tensorflow,在安装tensorflow会一起安装上tensorboard,一起安装tensorboard的版本应该也是1.13.几的版本吧,我也记得不是很清楚,
然后安装tensorboardX

pip install tensorboardX

然后所需要的依赖就安装完成了,接下来的就是重头戏了
tensorboardX的基本可视化是非常简单的,只需要在你训练脚本中添加几行代码就可以实现,

#-------------------------------------#
#       对数据集进行训练
#-------------------------------------#
import os
import numpy as np
import time
import torch
from torch.autograd import Variable
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
from utils.config import Config
from nets.yolo_training import YOLOLoss,Generator
from nets.yolo3 import YoloBody
from matplotlib import pyplot as plt
from tensorboardX import SummaryWriter
import torchvision.models.densenet
def get_lr(optimizer):
    for param_group in optimizer.param_groups:
        return param_group['lr']
def plot_curve(data):
    #fig = plt.figure()
    plt.plot(range(len(data)), data, color='blue')
    plt.legend(['value'], loc='upper right')
    plt.xlabel('step')
    plt.ylabel('value')
    plt.show()
def fit_ont_epoch(net,yolo_losses,epoch,epoch_size,epoch_size_val,gen,genval,Epoch):
    total_loss = 0
    val_loss = 0
    for iteration in range(epoch_size):
        start_time = time.time()
        images, targets = next(gen)#这里对原始的图片和框子进行了预处理
        with torch.no_grad():
            images = Variable(torch.from_numpy(images).cuda().type(torch.FloatTensor))
            targets = [Variable(torch.from_numpy(ann).type(torch.FloatTensor)) for ann in targets]

        optimizer.zero_grad()
        outputs = net(images)
        losses = []
        for i in range(3
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值