hadoop split 分片

hadoop split 分片

split

Hadoop中block块大小和split切片大小会影响到MapReduce程序在运行过程中的效率、map的个数。
通过例子 debug 查看hadoop中split的计算方法是怎么设计的。

FileInputFormat

FileInputFormat类在org.apache.hadoop.mapreduce.lib.input包下

computeSplitSize
      /** 计算切片大小
      *		blockSize 
      *		minSize 1
      *		maxSize 9223372036854775807
      */
      protected long computeSplitSize(long blockSize, long minSize,
                                      long maxSize) {
                                      //  maxSize blockSize 取最小是 blockSize 
                                      //然后 minSize 与 blockSize 取最大 结果是  blockSize
        return Math.max(minSize, Math.min(maxSize, blockSize));
      }



  /** 
   * 获取splits集合
   */
  public List<InputSplit> getSplits(JobContext job) throws IOException {
    StopWatch sw = new StopWatch().start();
    long minSize = Math.max(getFormatMinSplitSize(), getMinSplitSize(job)); //1
    long maxSize = getMaxSplitSize(job);//9223372036854775807

    // 创建splits集合
    List<InputSplit> splits = new ArrayList<InputSplit>();
    //得到hdfs文件列表
    List<FileStatus> files = listStatus(job);
    //对文件列表进行遍历
    for (FileStatus file: files) {
      Path path = file.getPath();//路径
      long length = file.getLen();//文件长度
      if (length != 0) {
      //文件块的文位置
        BlockLocation[] blkLocations;
        if (file instanceof LocatedFileStatus) {
          blkLocations = ((LocatedFileStatus) file).getBlockLocations(); //得到文件块的位置
        } else {
          FileSystem fs = path.getFileSystem(job.getConfiguration());
          blkLocations = fs.getFileBlockLocations(file, 0, length);
        }
        //判断文件是否可切分
        if (isSplitable(job, path)) {
          long blockSize = file.getBlockSize();//33554432
          long splitSize = computeSplitSize(blockSize, minSize, maxSize); //blockSize

          long bytesRemaining = length;
           private static final double SPLIT_SLOP = 1.1;   // 10% slop
          当文件长度/splitsize >    1.1 时 
          while (((double) bytesRemaining)/splitSize > SPLIT_SLOP) {
            int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
            splits.add(makeSplit(path, length-bytesRemaining, splitSize,
                        blkLocations[blkIndex].getHosts(),
                        blkLocations[blkIndex].getCachedHosts()));//splits添加分片
            bytesRemaining -= splitSize;
          }
          当还有剩余的文件
          if (bytesRemaining != 0) {
        int blkIndex = getBlockIndex(blkLocations, length-bytesRemaining);
        splits.add(makeSplit(path, length-bytesRemaining, bytesRemaining,
                   blkLocations[blkIndex].getHosts(),
                   blkLocations[blkIndex].getCachedHosts()));//加入集合
      }
    } else { // 不可切分
      splits.add(makeSplit(path, 0, length, blkLocations[0].getHosts(),
                  blkLocations[0].getCachedHosts()));
    }
  } else { 
    //Create empty hosts array for zero length files
    //文件长度为0时创建空文件
    splits.add(makeSplit(path, 0, length, new String[0]));
  }
}

        ......
        //返回切片集合
    return splits;
  }
	protected boolean isSplitable(JobContext context, Path filename) {
		return true;
	}
	protected FileSplit makeSplit(Path file, long start, long length, 
                            String[] hosts, String[] inMemoryHosts) {
	return new FileSplit(file, start, length, hosts, inMemoryHosts);
}

总结

split 分片的计算跟 blockSize, minSize, maxSize 三个参数有关
假如 blockSize 设置128 M
文件大小 200M
那么splitSize 就是128M
200/128=1.56>1.1 创建1个split (通过源码可以看出最右一个文件的大小在 0- 128+12.8M之间)
剩下72M在创建一个
就会产生2 个split
大文件不好模拟 可以通过下面参数设置 split 改小点 打断点就方便了
configuration.setLong(“mapred.max.split.size”,512);
configuration.setLong(“mapred.min.split.size”,512);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值