推荐系统论文笔记(8):Collaborative Filtering beyond the User-Item Matrix......

本文综述了推荐系统中超越用户-商品矩阵的最新进展,探讨了用户和商品的丰富侧信息及交互信息对推荐精度的影响。文章分析了时间依赖的协同过滤、张量分解和因子分解机等方法,并概述了面临的挑战,如社会化推荐、群体推荐和跨领域协同过滤。对于推荐系统初学者,这篇论文提供了深入理解的宝贵资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、基本信息

论文题目:《Collaborative Filtering beyond the User-Item Matrix:A Survey of the State of the Art and Future Challenges》

发表时间:ACM Computing Surveys (CSUR)47.1(2014):1-45.

论文作者及单位:Shi, Yue , M. Larson , and A. Hanjalic . (Delft University of Technology)

论文地址:https://dl.acm.org/citation.cfm?id=2556270

我的评分:5颗星
 

二、摘要

User-Item矩阵是在推荐系统领域占主导地位的协同过滤算法的基础,但近期一些新的推荐场景超出了UI矩阵所能表示的内容。这些新的场景下的信息可以被划分为两大类,一类是关于用户与商品的“rich side information”,另一类是将用户与物品的相互作用关联起来的“interaction information”。这篇文章综述并分析了推荐的场景包括涉及的信息源以及用来处理这些信息的协同过滤算法。这篇文章对大量的研究做出了全面的介绍,关键的参考文献有200多篇,目的是为了支撑推荐系统探索引入超越UI矩阵所能表示的信息进而发展。

 

三、论文的工作与主要内容

1、Rich Side Information of Users and Items:例如用户的属性(性别、年龄、爱好)和商品的属性(品类、内容),随着社会化推荐和用户生成内容(笔记5讲的就是这个&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值