一、基本信息
论文题目:《Collaborative Filtering beyond the User-Item Matrix:A Survey of the State of the Art and Future Challenges》
发表时间:ACM Computing Surveys (CSUR)47.1(2014):1-45.
论文作者及单位:Shi, Yue , M. Larson , and A. Hanjalic . (Delft University of Technology)
论文地址:https://dl.acm.org/citation.cfm?id=2556270
我的评分:5颗星
二、摘要
User-Item矩阵是在推荐系统领域占主导地位的协同过滤算法的基础,但近期一些新的推荐场景超出了UI矩阵所能表示的内容。这些新的场景下的信息可以被划分为两大类,一类是关于用户与商品的“rich side information”,另一类是将用户与物品的相互作用关联起来的“interaction information”。这篇文章综述并分析了推荐的场景包括涉及的信息源以及用来处理这些信息的协同过滤算法。这篇文章对大量的研究做出了全面的介绍,关键的参考文献有200多篇,目的是为了支撑推荐系统探索引入超越UI矩阵所能表示的信息进而发展。
三、论文的工作与主要内容
1、Rich Side Information of Users and Items:例如用户的属性(性别、年龄、爱好)和商品的属性(品类、内容),随着社会化推荐和用户生成内容(笔记5讲的就是这个&#x