一、基本信息
论文题目:《A Novel Bayesian Similarity Measure for Recommender Systems》
发表时间:ICJAI 2013
论文作者及单位:
论文地址:https://dl.acm.org/citation.cfm?id=2540506
二、摘要
协同过滤(collaborative filtering)是一种广泛使用的以用户为中心的推荐技术,它通过汇总来自类似用户的评级来预测项目的评级。用户相似度通常通过余弦相似度或皮尔逊相关系数来计算。然而,它们都只考虑评级向量的方向,并且都有一系列的缺点。为了解决这些问题,我们提出了一种新的基于Dirichlet分布的贝叶斯相似性度量,同时考虑了评级向量的方向和长度。此外,我们的principled method由于偶然性降低了相关性。对六个实际数据集的实验结果表明,该方法具有较高的精度。
三、论文主要内容与工作
1、原有的用来测量相似度的VSS和PCC方法存在四点不足:
- 平值问题:如果所有评级值都是flat,例如一个用户给分为(1,1,1),另一个给分为(5,5,5)则当相关公式分母变为0时&#