论文笔记:A Novel Bayesian Similarity Measure for Recommender Systems

本文提出了基于Dirichlet分布的贝叶斯相似性度量方法,用于改进推荐系统的用户相似度计算。传统的余弦相似度和皮尔逊相关系数在处理评级向量时存在平值、相反值、单值和交叉值问题。新方法同时考虑评级向量的方向和长度,通过排除偶然性提高了相关性的准确性。实验表明,这种方法在六个实际数据集上表现出更高的推荐精度。
摘要由CSDN通过智能技术生成

一、基本信息

论文题目:《A Novel Bayesian Similarity Measure for Recommender Systems》

发表时间:ICJAI 2013

论文作者及单位:

论文地址:https://dl.acm.org/citation.cfm?id=2540506

 

二、摘要

        协同过滤(collaborative filtering)是一种广泛使用的以用户为中心的推荐技术,它通过汇总来自类似用户的评级来预测项目的评级。用户相似度通常通过余弦相似度或皮尔逊相关系数来计算。然而,它们都只考虑评级向量的方向,并且都有一系列的缺点。为了解决这些问题,我们提出了一种新的基于Dirichlet分布的贝叶斯相似性度量,同时考虑了评级向量的方向和长度。此外,我们的principled method由于偶然性降低了相关性。对六个实际数据集的实验结果表明,该方法具有较高的精度。

 

三、论文主要内容与工作

1、原有的用来测量相似度的VSS和PCC方法存在四点不足:

  • 平值问题:如果所有评级值都是flat,例如一个用户给分为(1,1,1),另一个给分为(5,5,5)则当相关公式分母变为0时&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值