题目描述
曹是一只爱刷街的老曹,暑假期间,他每天都欢快地在阳光大学的校园里刷街。河蟹看到欢快的曹,感到不爽。河蟹决定封锁阳光大学,不让曹刷街。
阳光大学的校园是一张由N个点构成的无向图,N个点之间由M条道路连接。每只河蟹可以对一个点进行封锁,当某个点被封锁后,与这个点相连的道路就被封锁了,曹就无法在与这些道路上刷街了。非常悲剧的一点是,河蟹是一种不和谐的生物,当两只河蟹封锁了相邻的两个点时,他们会发生冲突。
询问:最少需要多少只河蟹,可以封锁所有道路并且不发生冲突。
输入输出格式
输入格式:
第一行:两个整数N,M
接下来M行:每行两个整数A,B,表示点A到点B之间有道路相连。
仅一行:如果河蟹无法封锁所有道路,则输出“Impossible”,否则输出一个整数,表示最少需要多少只河蟹。
输入输出样例
输入样例#1:
【输入样例1】 3 3 1 2 1 3 2 3 【输入样例2】 3 2 1 2 2 3
输出样例#1:
【输出样例1】 Impossible 【输出样例2】 1
说明
【数据规模】
1<=N<=10000,1<=M<=100000,任意两点之间最多有一条道路。
我TMD要吐槽一下今天的考试,明明说的是一张图,结果数据不保证所有的点都连在一起,--->WA 得了40分 操蛋。。
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
#define maxn 10010
#define maxm 100100
int cw,cb,tot,head[maxn],vis[maxn],ans,n,m;
bool flag=false;
struct Edge{int u,v,next;}e[maxm*2];
void Add_Edge(int u,int v){
e[++tot].v=v;e[tot].next=head[u];head[u]=tot;
}
void DFS(int u,bool last){
if(vis[u]==-1) vis[u]=!last;
if(vis[u]==1) cw++;
if(vis[u]==0) cb++;
for(int i=head[u];i;i=e[i].next){
int v=e[i].v;
if(vis[v]==-1) DFS(v,vis[u]);
else{
if(vis[v]==vis[u]) flag=true;
}
}
return;
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1,u,v;i<=m;i++){
scanf("%d%d",&u,&v);
Add_Edge(u,v);Add_Edge(v,u);
}
memset(vis,-1,sizeof vis );
for(int i=1;i<=n;i++){
if(vis[i]==-1){
flag=false;
cw=cb=0;
DFS(i,0);
ans+=min(cw,cb);
}
if(flag==true){
printf("Impossible\n");return 0;
}
}
printf("%d",ans);
return 0;
}