4399: 魔法少女LJJ
Time Limit: 20 Sec Memory Limit: 162 MB
Submit: 287 Solved: 73
Description
在森林中见过会动的树,在沙漠中见过会动的仙人掌过后,魔法少女LJJ已经觉得自己见过世界上的所有稀奇古怪的事情了
LJJ感叹道“这里真是个迷人的绿色世界,空气清新、淡雅,到处散发着醉人的奶浆味;小猴在枝头悠来荡去,好不自在;各式各样的鲜花争相开放,各种树枝的枝头挂满沉甸甸的野果;鸟儿的歌声婉转动听,小河里飘着落下的花瓣真是人间仙境”
SHY觉得LJJ还是太naive,一天,SHY带着自己心爱的图找到LJJ,对LJJ说:“既然你已经见识过动态树,动态仙人掌了,那么今天就来见识一下动态图吧”
LJJ:“要支持什么操作?”
SHY:“
1.新建一个节点,权值为x。
2.连接两个节点。
3.将一个节点a所属于的联通快内权值小于x的所有节点权值变成x。
4.将一个节点a所属于的联通快内权值大于x的所有节点权值变成x。
5.询问一个节点a所属于的联通块内的第k小的权值是多少。
6.询问一个节点a所属联通快内所有节点权值之积与另一个节点b所属联通快内所有节点权值之积的大小。
7.询问a所在联通快内节点的数量
8.若两个节点a,b直接相连,将这条边断开。
9.若节点a存在,将这个点删去。
”
LJJ:“我可以离线吗?”
SHY:“可以,每次操作是不加密的,”
LJJ:“我可以暴力吗?”
SHY:“自重”
LJJ很郁闷,你能帮帮他吗
Input
第一行有一个正整数m,表示操作个数。
接下来m行,每行先给出1个正整数c。
若c=1,之后一个正整数x,表示新建一个权值为x的节点,并且节点编号为n+1(当前有n个节点)。
若c=2,之后两个正整数a,b,表示在a,b之间连接一条边。
若c=3,之后两个正整数a,x,表示a联通快内原本权值小于x的节点全部变成x。
若c=4,之后两个正整数a,x,表示a联通快内原本权值大于x的节点全部变成x。
若c=5,之后两个正整数a,k,表示询问a所属于的联通块内的第k小的权值是多少。
若c=6,之后两个正整数a,b,表示询问a所属联通快内所有节点权值之积与b所属联通快内所有节点权值之积的大小,
若a所属联通快内所有节点权值之积大于b所属联通快内所有节点权值之积,输出1,否则为0。
若c=7,之后一个正整数a,表示询问a所在联通块大小
若c=8,之后两个正整数a,b,表示断开a,b所连接的边。
若c=9,之后一个正整数a,表示断开a点的所有连边
具体输出格式见样例
Output
Sample Input
12
1 2
1 3
1 4
1 5
1 6
2 1 2
2 2 3
2 3 4
2 4 5
9 1
3 2 5
5 3 4
Sample Output
6
HINT
对100%的数据 0<=m<=400000,c<=7,所有出现的数均<=1000000000,所有出现的点保证存在
【HINT】请认真阅读题面
Source
By liuchenrui
/**************************************************************
Problem: 4399
User: Twi_etn
Language: C++
Result: Compile_Error
****************************************************************/
// from: Claris
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
using namespace std;
const int N=400010,M=7000000;
int i,x,y,op[N][3],b[N],U,fa[N],T[N],cnt,n,m;
int tot,l[M],r[M],v[M];double s[M],L[N];
int read(){
int x=0,f=1;char c=getchar();
while(c<'0'||c>'9'){if(c=='-') f=-1;c=getchar();}
while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
return x*f;
}
int find(int x){
return fa[x]==x ? x : fa[x]=find(fa[x]);
}
void Ins(int &x,int a,int b,int c,int d,double e){
if(!x) x= ++tot;
v[x]+=d;s[x]+=e;
if(a==b) return;
int mid=(a+b)>>1;
if(c<=mid) Ins(l[x],a,mid,c,d,e);
else Ins(r[x],mid+1,b,c,d,e);
}
inline int lower(int x){
int l=1,r=U,mid,t;
while(l<=r){
mid=(l+r)>>1;
if(b[mid]<=x)l=mid+1,t=mid;
else r=mid-1;
}
return t;
}
void up(int x){
v[x]=v[l[x]]+v[r[x]];
s[x]=s[l[x]]+s[r[x]];
}
void del(int x,int a,int b,int c,int d){
if(!v[x]) return;
if(a==b){
cnt+=v[x];v[x]=0;s[x]=0;
return ;
}
int mid=(a+b)>>1;
if(c<=mid)del(l[x],a,mid,c,d);
if(d>mid) del(r[x],mid+1,b,c,d);
up(x);
}
int Merge(int x,int y,int a,int b){
if(!x) return y;
if(!y) return x;
if(a==b){
v[x]+=v[y];s[x]+=s[y];
return x;
}
int mid=(a+b)>>1;
l[x]=Merge(l[x],l[y],a,mid);
r[x]=Merge(r[x],r[y],mid+1,b);
return up(x),x;
}
int K_TH(int x,int k){
int a=1,b=U,mid;
while(a<b){
mid=(a+b)>>1;
if(v[l[x]]>=k)b=mid,x=l[x];
else k-=v[l[x]],a=mid+1,x=r[x];
}
return a;
}
int main(){
m=read();
for(int i=1;i<=m;i++){
op[i][0]=read();op[i][1]=read();
if(op[i][0]>1&&op[i][0]<7)op[i][2]=read();
if(op[i][0]==1)b[++U]=op[i][1];
if(op[i][0]==3||op[i][0]==4)b[++U]=op[i][2];
}
sort(b+1,b+U+1);
for(int i=1;i<=U;i++)L[i]=log(b[i]);
for(int i=1;i<=m;i++){
int x=op[i][1],y=op[i][2];
if(op[i][0]==1){
x=lower(x),n++;
fa[n]=n;Ins(T[n],1,U,x,1,L[x]);
}
if(op[i][0]==2){
x=find(x),y=find(y);
if(x==y) continue;
fa[x]=y;
T[fa[x]]=Merge(T[x],T[y],1,U);
}
if(op[i][0]==3){
x=find(x),y=lower(y),cnt=0;
if(y>1)del(T[x],1,U,1,y-1);
if(cnt)Ins(T[x],1,U,y,cnt,L[y]*cnt);
}
if(op[i][0]==4){
x=find(x),y=lower(y),cnt=0;
if(y<U)del(T[x],1,U,y+1,U);
if(cnt)Ins(T[x],1,U,y,cnt,L[y]*cnt);
}
if(op[i][0]==5)printf("%d\n",b[K_TH(T[find(x)],y)]);
if(op[i][0]==6)puts(s[T[find(x)]]>s[T[find(y)]]?"1":"0");
if(op[i][0]==7)printf("%d\n",v[T[find(x)]]);
}
return 0;
}