洛谷 P1081开车旅行

39 篇文章 0 订阅

题目描述
小 A 和小 B 决定利用假期外出旅行,他们将想去的城市从 1 到 N 编号,且编号较小的
城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i 的海拔高度为
Hi,城市 i 和城市 j 之间的距离 d[i,j]恰好是这两个城市海拔高度之差的绝对值,即
d[i,j] = |Hi? Hj|。 旅行过程中,小 A 和小 B 轮流开车,第一天小 A 开车,之后每天轮换一次。他们计划
选择一个城市 S 作为起点,一直向东行驶,并且最多行驶 X 公里就结束旅行。小 A 和小 B
的驾驶风格不同,小 B 总是沿着前进方向选择一个最近的城市作为目的地,而小 A 总是沿
着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离
相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的
城市,或者到达目的地会使行驶的总距离超出 X 公里,他们就会结束旅行。
在启程之前,小 A 想知道两个问题:
1.对于一个给定的 X=X0,从哪一个城市出发,小 A 开车行驶的路程总数与小 B 行驶
的路程总数的比值最小(如果小 B 的行驶路程为 0,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小 A 开车行驶的路程总数与小 B 行驶的路程总数的比
值都最小,则输出海拔最高的那个城市。
对任意给定的 X=Xi和出发城市 Si,小 A 开车行驶的路程总数以及小 B 行驶的路程
总数。
输入输出格式
输入格式:
第一行包含一个整数 N,表示城市的数目。
第二行有 N 个整数,每两个整数之间用一个空格隔开,依次表示城市 1 到城市 N 的海
拔高度,即 H1,H2,……,Hn,且每个 Hi都是不同的。
第三行包含一个整数 X0。
第四行为一个整数 M,表示给定 M 组 Si和 Xi。
接下来的 M 行,每行包含 2 个整数 Si和 Xi,表示从城市 Si出发,最多行驶 Xi公里。
输出格式:
输出共 M+1 行。
第一行包含一个整数 S0,表示对于给定的 X0,从编号为 S0的城市出发,小 A 开车行驶
的路程总数与小 B 行驶的路程总数的比值最小。
接下来的 M 行,每行包含 2 个整数,之间用一个空格隔开,依次表示在给定的 Si和
Xi下小 A 行驶的里程总数和小 B 行驶的里程总数。
输入输出样例
输入样例#1:
drive1
4
2 3 1 4
3
4
1 3
2 3
3 3
4 3
drive2
10
4 5 6 1 2 3 7 8 9 10
7
10
1 7
2 7
3 7
4 7
5 7
6 7
7 7
8 7
9 7
10 7
输出样例#1:
drive1
1
1 1
2 0
0 0
0 0
drive2
2
3 2
2 4
2 1
2 4
5 1
5 1
2 1
2 0
0 0
0 0
说明
【输入输出样例 1 说明】
各个城市的海拔高度以及两个城市间的距离如上图所示。
如果从城市 1 出发,可以到达的城市为 2,3,4,这几个城市与城市 1 的距离分别为 1,1,2,
但是由于城市 3 的海拔高度低于城市 2,所以我们认为城市 3 离城市 1 最近,城市 2 离城市
1 第二近,所以小 A 会走到城市 2。到达城市 2 后,前面可以到达的城市为 3,4,这两个城
市与城市 2 的距离分别为 2,1,所以城市 4 离城市 2 最近,因此小 B 会走到城市 4。到达城
市 4 后,前面已没有可到达的城市,所以旅行结束。
如果从城市 2 出发,可以到达的城市为 3,4,这两个城市与城市 2 的距离分别为 2,1,由
于城市 3 离城市 2 第二近,所以小 A 会走到城市 3。到达城市 3 后,前面尚未旅行的城市为
4,所以城市 4 离城市 3 最近,但是如果要到达城市 4,则总路程为 2+3=5>3,所以小 B 会
直接在城市 3 结束旅行。
如果从城市 3 出发,可以到达的城市为 4,由于没有离城市 3 第二近的城市,因此旅行
还未开始就结束了。
如果从城市 4 出发,没有可以到达的城市,因此旅行还未开始就结束了。
【输入输出样例 2 说明】
当 X=7 时,
如果从城市 1 出发,则路线为 1 -> 2 -> 3 -> 8 -> 9,小 A 走的距离为 1+2=3,小 B 走的
距离为 1+1=2。(在城市 1 时,距离小 A 最近的城市是 2 和 6,但是城市 2 的海拔更高,视
为与城市 1 第二近的城市,所以小 A 最终选择城市 2;走到 9 后,小 A 只有城市 10 可以走,
没有第 2 选择可以选,所以没法做出选择,结束旅行)
如果从城市 2 出发,则路线为 2 -> 6 -> 7 ,小 A 和小 B 走的距离分别为 2,4。
如果从城市 3 出发,则路线为 3 -> 8 -> 9,小 A 和小 B 走的距离分别为 2,1。
如果从城市 4 出发,则路线为 4 -> 6 -> 7,小 A 和小 B 走的距离分别为 2,4。
如果从城市 5 出发,则路线为 5 -> 7 -> 8 ,小 A 和小 B 走的距离分别为 5,1。
如果从城市 6 出发,则路线为 6 -> 8 -> 9,小 A 和小 B 走的距离分别为 5,1。
如果从城市 7 出发,则路线为 7 -> 9 -> 10,小 A 和小 B 走的距离分别为 2,1。
如果从城市 8 出发,则路线为 8 -> 10,小 A 和小 B 走的距离分别为 2,0。
全国信息学奥林匹克联赛(NOIP2012)复赛
提高组 day1
第 7 页 共 7 页
如果从城市 9 出发,则路线为 9,小 A 和小 B 走的距离分别为 0,0(旅行一开始就结
束了)。
如果从城市 10 出发,则路线为 10,小 A 和小 B 走…

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
using namespace std;
#define MAXN 100050
#define fst first
#define sec second
#define LL long long
int n,m,h[MAXN],p[MAXN],fst[MAXN],sec[MAXN];
struct Node{ int pre,next,d; }q[MAXN];
int g[MAXN][20],mi[15],lena,lenb;
LL f[MAXN][20][2];

inline bool cmp(Node x,Node y){ return h[x.d]<h[y.d]; }

void prepare(){
    for(int i=1;i<=n;++i) q[i].d=i;
    sort(q+1,q+n+1,cmp);
    for(int i=1;i<=n;++i)
        q[i].pre=i-1,q[i].next=i+1,p[q[i].d]=i;
    for(int i=1;i<=n;++i){
        int x=q[p[i]].pre,y=q[p[i]].next;
        if(y<=n && (x<1 || h[q[y].d]-h[q[p[i]].d]<h[q[p[i]].d]-h[q[x].d] ))
            fst[i]=q[y].d,y=q[y].next;
        else fst[i]=q[x].d,x=q[x].pre;

        if(y<=n && (x<1 || h[q[y].d]-h[q[p[i]].d] < h[q[p[i]].d]-h[q[x].d]))
            sec[i]=q[y].d;
        else sec[i]=q[x].d;
        x=q[p[i]].pre,y=q[p[i]].next,q[x].next=y,q[y].pre=x;
    }
}

void pre_pare(){
    mi[0]=1;
    for(int i=1;i<14;++i) mi[i]=mi[i-1]*2;
    for(int i=1;i<=n;++i)
        g[i][0]=fst[sec[i]],f[i][0][0]=abs(h[sec[i]]-h[i]),f[i][0][1]=abs(h[fst[sec[i]]]-h[sec[i]]);
    for(int j=1;j<=17;++j)
        for(int i=1;i<=n;++i){
            g[i][j]=g[g[i][j-1]][j-1];
            if(g[i][j]==0) continue;
            f[i][j][0]=f[i][j-1][0]+f[g[i][j-1]][j-1][0];
            f[i][j][1]=f[i][j-1][1]+f[g[i][j-1]][j-1][1];
        }

}

void solve(int s,int x){
    lena=lenb=0;
    for(int j=16;j>=0;--j)
        if(g[s][j]!=0 && f[s][j][0]+f[s][j][1]<=x){
            lena+=f[s][j][0],lenb+=f[s][j][1];
            x-=f[s][j][0]+f[s][j][1];
            s=g[s][j];
        }
    if(sec[s]!=0 && abs(h[s]-h[sec[s]])<=x) lena+=abs(h[s]-h[sec[s]]);
}

inline void read(int &x){
    x=0; int f=1; char c=getchar();
    while(c>'9'||c<'0'){ if(c=='-') f=-1; c=getchar(); }
    while(c>='0'&&c<='9'){ x=x*10+c-'0'; c=getchar(); }  x*=f;
}

int main(){
    int s,x,k,i;
    read(n);
    for(int i=1;i<=n;++i) read(h[i]);
    prepare(),pre_pare();
    double ans=-1;
    read(x);
    for(k=0,i=1;i<=n;++i){
        s=i,solve(s,x);
        if(ans<0 && lenb==0 && h[i]>h[k]) { k=i;continue; }
        if(ans<0 && lenb>0) { ans=lena*1.0/lenb,k=i;continue; }
        if(ans>0 && lenb>0 && (ans>lena*1.0/lenb || (fabs(ans-lena*1.0/lenb)<=0.000001 && h[i]>h[k])))
            { ans=lena*1.0/lenb,k=i; continue; }
    }
    printf("%d\n",k);
    read(m);
    for(int i=1;i<=m;++i){
        read(s),read(x);
        solve(s,x);
        printf("%d %d\n",lena,lenb);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七情六欲·

学生党不容易~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值