洛谷 P3371 【模板】单源最短路径(Dijkstra + 堆优化)

77 篇文章 0 订阅

题目描述
如题,给出一个有向图,请输出从某一点出发到所有点的最短路径长度。
输入输出格式
输入格式:
第一行包含三个整数N、M、S,分别表示点的个数、有向边的个数、出发点的编号。
接下来M行每行包含三个整数Fi、Gi、Wi,分别表示第i条有向边的出发点、目标点和长度。
输出格式:
一行,包含N个用空格分隔的整数,其中第i个整数表示从点S出发到点i的最短路径长度(若S=i则最短路径长度为0,若从点S无法到达点i,则最短路径长度为2147483647)
输入输出样例
输入样例#1: 复制
4 6 1
1 2 2
2 3 2
2 4 1
1 3 5
3 4 3
1 4 4
输出样例#1: 复制
0 2 4 3
说明
时空限制:1000ms,128M
数据规模:
对于20%的数据:N<=5,M<=15
对于40%的数据:N<=100,M<=10000
对于70%的数据:N<=1000,M<=100000
对于100%的数据:N<=10000,M<=500000
样例说明:
这里写图片描述

#include<iostream>
#include<cstring>
#include<algorithm>
#include<queue>
#include<cstdio>
#include<vector>
#define MAXN 10005
#define MAXM 500005
using namespace std;
struct Edge{ int to,nxt,w; }e[MAXM << 1];
struct Node{
    int u,dis;
    inline bool operator > (const Node &b) const {
        return dis > b.dis;
    }
};
priority_queue<Node,vector<Node>,greater<Node> >q;

int tot,head[MAXN],dis[MAXN];
bool vis[MAXN];
inline void Add_Edge(int u,int v,int w) {
    e[++tot].to = v,e[tot].w = w,e[tot].nxt = head[u],head[u] = tot;
    //e[++tot].to = u,e[tot].w = w,e[tot].nxt = head[v],head[v] = tot;
}
inline void read(int &x) {
    x = 0; register char c = getchar();
    while(!isdigit(c)) c = getchar();
    while(isdigit(c)) x = x * 10 + c - '0',c = getchar();
}


int main(int argc,char *argv[]) {
    int n,m,S,u,v,w; read(n),read(m),read(S);
    for(int i=1; i<=m; ++i) {
        read(u),read(v),read(w);
        Add_Edge(u,v,w);
    }
    memset(dis,127 / 3,sizeof dis );
    int INF = dis[0];
    memset(vis,0,sizeof vis );
    Node Now;
    q.push((Node){S,0});
    dis[S] = 0;
    while(!q.empty()) {
        Now = q.top(); q.pop();
        if(vis[Now.u]) continue;
        int u = Now.u;  vis[u] = 1;
        for(int i=head[u]; i; i=e[i].nxt) {
            int v = e[i].to;
            if(dis[v] > dis[u] + e[i].w) {
                dis[v] = dis[u] + e[i].w;
                q.push((Node){v,dis[v]});
            }
        }
    }
    for(int i=1; i<=n; ++i){
        if(dis[i] == INF) dis[i] = 2147483647;
        printf("%d ",dis[i]);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

七情六欲·

学生党不容易~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值