差分数组与树状数组区间更新

查分数组

差分数组是通过维护相邻元素的差值,来实现对多次区间操作的优化。(第一次见)
比方说给定多次操作 a,b,c, 对[a,b]内元素都+c 。然后求各元素的值
如果是普通的暴力求法,每次对[a,b]复杂度太高了。所以我们整一个优化的技巧。穿件一个差项数组。 c [ i ] = a [ i ] − a [ i − 1 ] ( i > = 2 ) c[i]=a[i]-a[i-1](i>=2) c[i]=a[i]a[i1](i>=2) c [ 1 ] = a [ 1 ] c[1]=a[1] c[1]=a[1]
因为这样我们发现的得到a[i]的式子
a [ i ] = c [ 1 ] + c [ 2 ] + . . . + c [ i ] a[i]=c[1]+c[2]+...+c[i] a[i]=c[1]+c[2]+...+c[i] 修改复杂度O(1),查询复杂度O(n)。
参考资料:这个大佬的博客
https://www.cnblogs.com/COLIN-LIGHTNING/p/8436624.html

 #include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm>
using namespace std; 
int d[100010],a[100010],l,r;
int main(){
    int n;
    while(scanf("%d",&n),n)
    {
        memset(d,0,sizeof(d));
        memset(a,0,sizeof(a));
        for(int i=1;i<=n;++i){
            scanf("%d%d",&l,&r);
            d[l]+=1;
            d[r+1]-=1;
        }
        for(int i=1;i<=n;++i) a[i]=a[i-1]+d[i];
        for(int i=1;i<n;++i) printf("%d ",a[i]);
        printf("%d\n",a[n]);
    }
    return 0;
}

题目
https://www.luogu.org/problem/P1083
题意:中文题意,给定一个序列,进行多次区间修改,输出第一次区间修改不能执行的序号(比方说已经删除成0 了,不可再删除了)
思路:二分+差分数组。 O(logn*n)

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
/*   用差分数组,O1处理,然后判断
让谁 修改的时候二分答案一下。

*/
const int maxn=1e6+500;
typedef long long ll;
int a[maxn];
int b[maxn];
int c[maxn];
ll num[maxn];
ll cf[maxn];
int m;
bool judge(int p){
     memset(cf,0,sizeof(cf));
     for(int i=1;i<=p;i++){
         cf[b[i]]+=1ll*a[i];
         cf[c[i]+1]-=1ll*a[i];
     }

     for(int i=1;i<=m;i++){
         cf[i]+=cf[i-1];
         //cout<<cf[i]<<"*"<<i<<" "<<p<<endl;
         if(cf[i]>num[i])return true;
     }

     return false;
}
int main()
{    int n;
     scanf("%d%d",&m,&n);
     for(int i=1;i<=m;i++){
         scanf("%lld",&num[i]);
     }
     for(int i=1;i<=n;i++){
         scanf("%d%d%d",&a[i],&b[i],&c[i]);
     }
     if(!judge(n)){
        puts("0");return 0;
     }
     puts("-1");
     int r=n*2;
     int l=0;
     int ans=-1;
     while(l<r){
          int mid=(l+r)>>1;
          if(judge(mid)){
              r=mid;
              ans=mid;
          }
          else{
              l=mid+1;
          }
     }
     printf("%d\n",ans);
    return 0;
}

树状数组的区间修改

关于树状数组,我知道他是一个非常巧妙的利用计算机存储数字的特性得到的类似一种固态二分的写法。利用线段树进行点更新,区间查询,异常简单。但是区间修改呢(线段树的lazy区间修改也很巧妙)。
我们已经知道了利用差分数组来求多次修改后的a[i]$$

  ans = a[1] + a[2] + a[3] +……+ a[q-1] + a[q]
   sum=sigma(c,1) + sigma(c,2) + sigma(c,3) +…… + sigma(c, q-1 ) + sigma(c, q )
   =c[1] + ( c[1] + c[2] ) + ( c[1] + c[2] + c[3] ) + …… + (c[1] + c[2]+……+ c[q-1] )+ ( c[1] + c[2]+……+ c[q] )

  = q*c[1] + (q-1)*c[2] + (q-2)*c[3] +…… + c[q]

 = q* (c[1]+c[2]+...+c[q]) - (0*c[1]+1*c[2]+...+(q-1)*c[q])
 =(q+1) *(c[1]+c[2]+...+c[q])-(1*c[1]+2*c[2]+...+q*c[q])

所以我们需要维护两个树状数组 一个是正常的查分数组。另一个是i*w(w为修改项),修改四次,虽然修改的次数多了两次,但是代码非常好写。
证明过程是这个大佬的源出处 https://blog.csdn.net/weixin_42557561/article/details/81781916

#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=200005,maxq=200005;
int n,q;
int lowbit(int x)
{
    return x&(-x);
}
long long delta[maxn]; //差分数组
long long deltai[maxn]; //delta*i
long long sum[maxn];//原始前缀和
void update(long long *c,int x,int y)
{
    while(x<=n)
    {
        c[x]+=y;
        x+=lowbit(x);
    }
}
long long query(long long *c,int x)
{
    long long ans=0;
    while(x>0)
    {
        ans+=c[x];
        x-=lowbit(x);
    }
    return ans;
}
int x[maxn];
int main()
{
    cin>>n>>q;
    for(int i=1;i<=n;i++)
    {
        //int x;
        cin>>x[i];
        //sum[i]=sum[i-1]+x;
    }
    for(int i=1;i<=n;i++){
        update(delta,i,x[i]-x[i-1]);
        update(deltai,i,(x[i]-x[i-1])*i);
    }
    while(q--)
    {
        int x;
        cin>>x;
        if(x==1)
        {
            int y,z,w;
            cin>>y>>z>>w;
            update(delta,y,w);
            update(delta,z+1,-w);
            update(deltai,y,w*y);
            update(deltai,z+1,-w*(z+1));
        }
        if(x==2)
        {
            int y,z;
            cin>>y>>z;
            long long suml=(z+1)*query(delta,z)-query(deltai,z);
             suml-=y*query(delta,y-1)-query(deltai,y-1);
            cout<<suml<<endl;
        }
    }
    return 0;
}

记:那俩示例代码都是扒的emm,以后碰见相关思路的题目我在补到这上面吧。我第一次看见查分数组这种操作还以为是codeforces的骚操作(毕竟codeforces上有很多我不理解的数学证明(智力碾压)的结论)没想到基本的思想竟然和我最喜欢的BIT有关。

### C++ 中树状数组实现区间修改和区间查询 #### 基本原理 树状数组是一种高效处理动态前缀和问题的数据结构。对于 **区间修改** 和 **区间查询** 的需求,可以通过差分的思想来解决。 假设原始数为 `a`,其对应的差分为 `d`,其中 \( d_i = a_i - a_{i-1} \)[^3]。通过维护这个差分,可以将区间修改转化为单点修改,并利用树状数组完成高效的查询操作。 以下是完整的实现代码: ```cpp #include <bits/stdc++.h> using namespace std; #define lowbit(x) (x & (-x)) const int MAXN = 1e5 + 5; long long c[MAXN], orig_a[MAXN]; int n; // 更新函数:对差分进行单点修改 void update(int idx, long long delta) { while (idx <= n) { c[idx] += delta; idx += lowbit(idx); } } // 查询函数:计算前缀和 long long query(int idx) { long long res = 0; while (idx > 0) { res += c[idx]; idx -= lowbit(idx); } return res; } // 初始化树状数组 void init(vector<long long> &arr) { memset(c, 0, sizeof(c)); n = arr.size(); for (int i = 1; i <= n; ++i) { update(i, arr[i]); } } // 区间修改 [l, r] 加上 val void range_update(int l, int r, long long val) { update(l, val); // 对位置 l 进行增加 if (r + 1 <= n) update(r + 1, -val); // 对位置 r+1 进行减少 } // 区间查询 [l, r] long long range_query(int l, int r) { return query(r) - query(l - 1); } int main() { ios::sync_with_stdio(false); cin.tie(0); int m; cin >> n >> m; // 数长度 n 和 操作次数 m vector<long long> arr(n + 1, 0); for (int i = 1; i <= n; ++i) cin >> arr[i]; init(arr); while (m--) { char op; cin >> op; if (op == 'Q') { // Query int l, r; cin >> l >> r; cout << range_query(l, r) << "\n"; } else if (op == 'U') { // Update int l, r; long long val; cin >> l >> r >> val; range_update(l, r, val); } } return 0; } ``` --- #### 代码解析 1. **初始化部分** - 使用 `init()` 函数初始化树状数组,输入初始数并将其转换为差分形式存储到树状数组中[^3]。 2. **更新操作 (`range_update`)** - 将区间 `[l, r]` 上的每个元素加上 `val` 转化为两个单点修改: - 在位置 `l` 处增加 `val`; - 在位置 `r+1` 处减去 `val`(如果存在的话)[^3]。 3. **查询操作 (`range_query`)** - 利用树状数组快速求解前缀和的功能,返回区间 `[l, r]` 的总和。 4. **时间复杂度分析** - 单次更新或查询的时间复杂度均为 \( O(\log n) \),因此适合大规模数据范围下的应用[^2]。 --- #### 差分的作用 差分的核心作用在于将复杂的区间修改简化为简单的单点修改。具体来说: - 如果需要对区间 `[l, r]` 执行加法操作,则只需调整差分中的两个端点即可[^3]。 这种技巧使得基于树状数组的解决方案更加简洁高效。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值