树状数组可以实现单点修改区间查询,或是差分的区间修改单点查询。【点这里】
那么树状数组能不能实现区间加值区间查询呢?
原始序列为a[]。我们先考虑区间加值,用差分的方式维护一个d[]数组,d[x]表示的是[x,maxn]每个数的增量。
那么如果需要查询1~x的前缀和,需要查的是
sumx=sigma(ai)+d1∗x+d2∗(x−1)+d3∗(x−2)+...+dx∗1
=sigma(ai)+sigma(di∗(x+1−i))
=sigma(ai)+(x+1)∗sigma(di)−sigma(di∗i)
所以把
di
处理一个树状数组tree[],
di∗i
处理成一个树状数组treex[]。查询sum[x]时只需要求suma[x]+(x+1)*tree[x]-treex[x]就可以了。
模板题是【模板】线段树1 洛谷P3372
#include<bits/stdc++.h>
#define lowbit(x) (x&(-x))
using namespace std;
int n,m;
long long a[100005];
long long tree[100005],treex[100005];
inline void add(long long *ths,int x,long long num){
while(x<=n){
ths[x]+=num;
x+=lowbit(x);
}
}
inline long long search(long long *ths,int x){
long long re=0;
while(x){
re+=ths[x];
x-=lowbit(x);
}
return re;
}
inline long long search(int x){
return a[x]+(x+1)*search(tree,x)-search(treex,x);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i) scanf("%lld",&a[i]),a[i]+=a[i-1];
while(m--){
int opt;
scanf("%d",&opt);
if(opt==1){
int l,r;
long long k;
scanf("%d%d%lld",&l,&r,&k);
add(tree,l,k); add(tree,r+1,-k);
add(treex,l,l*k);add(treex,r+1,-(r+1)*k);
}
else{
int l,r;
scanf("%d%d",&l,&r);
printf("%lld\n",search(r)-search(l-1));
}
}
return 0;
}