YbtOJ 冲刺 NOIP2020 模拟赛 Day10 D.弱者对决【区间dp】


题目:

传送门


题意:

m m m个形如 { a i , b i , c i } \{a_i,b_i,c_i\} {ai,bi,ci}的三元组,表示在 a i ∼ b i a_i\sim b_i aibi的区间内, x m i n x_{min} xmin如果 < = c i <=c_i <=ci,则此询问有 x m i n x_{min} xmin的贡献
问如何安排 x i x_i xi的大小能使得最后答案最大


分析:

首先我们可以发现, x i x_i xi一定是某个 c i c_i ci,因为如果 c i 1 < x i < c i 2 c_{i1}<x_i<c_{i2} ci1<xi<ci2,那么对于 i 1 i_1 i1并不会产生更多的贡献,而 i 2 i_2 i2虽然产生了,但显然比 x i = c i 2 x_i=c_{i2} xi=ci2的贡献小
据此,我们阔以考虑将 c c c离散化处理
我们需要记录的量有区间 ( l , r ) (l,r) (l,r) x m i n x_{min} xmin x m i n x_{min} xmin的位置
那么设 f l , r , w f_{l,r,w} fl,r,w表示对于所有 l < = a i & b i < = r l<=a_i\&b_i<=r l<=ai&bi<=r的询问,当 x m i n = w x_{min}=w xmin=w时取得最大贡献, k k k l ∼ r l\sim r lr间的某个位置,表示 w w w的位置
同时统计下 w w w会对哪些询问产生贡献,显然需要满足 l < = a i < = k < = b i < = r & c i > = w l<=a_i<=k<=b_i<=r\&c_i>=w l<=ai<=k<=bi<=r&ci>=w,设这样的询问有 c n t w cnt_w cntw
f l , r , w = w ∗ c n t w + m a x { f l , k − 1 , h } + m a x { f k + 1 , r , h }   ∣   h > = w f_{l,r,w}=w*cnt_w+max\{f_{l,k-1,h}\}+max\{f_{k+1,r,h}\}\ |\ h>=w fl,r,w=wcntw+max{fl,k1,h}+max{fk+1,r,h}  h>=w
直接转移复杂度为 O ( n 3 m ) O(n^3m) O(n3m)
但注意到是取最大值,我们可以对每个 f l , r f_{l,r} fl,r搞一个后缀最大值,转移的时候直接调用
此时复杂度来到 O ( n 2 m ) O(n^2m) O(n2m),可以解决此题
对于每个 x i x_i xi的值,我们只需要记录下每个最大值是从 w w w为哪个值转移来的


代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstring>  
#include<string>
#include<algorithm>
#include<queue>
#define LL long long
using namespace std;
inline LL read() {
    LL d=0,f=1;char s=getchar();
    while(s<'0'||s>'9'){if(s=='-')f=-1;s=getchar();}
    while(s>='0'&&s<='9'){d=d*10+s-'0';s=getchar();}
    return d*f;
}
int a[4005],b[4005],c[4005],cnt[4005],bc[4005];
int n,m,t;
void S(int l,int r,int k)
{
	memset(cnt,0,sizeof(cnt));
	for(int i=1;i<=m;i++)
	  if(l<=a[i]&&a[i]<=k&&k<=b[i]&&b[i]<=r)
	    cnt[c[i]]++;
	for(int i=t;i;i--) cnt[i]+=cnt[i+1];
	return;
}
int f[55][55][4005],kf[55][55][4005],g[55][55][4005],kg[55][55][4005];
void get(int l,int r,int w)
{
	if(!l||!r||l>r) return;
	int k=kf[l][r][w];
	get(l,k-1,kg[l][k-1][w]);
	printf("%d ",bc[w]);
	get(k+1,r,kg[k+1][r][w]); 
	return;
}
int main()
{
	n=read();m=read();
	for(int i=1;i<=m;i++) a[i]=read(),b[i]=read(),bc[i]=c[i]=read();
	sort(bc+1,bc+1+m);
	t=unique(bc+1,bc+1+m)-bc-1;
	for(int i=1;i<=m;i++) c[i]=lower_bound(bc+1,bc+1+t,c[i])-bc;
	for(int len=1;len<=n;len++)
	  for(int l=1;l<=n;l++)
	  {
	  	int r=l+len-1;
	  	if(r>n) continue;
	  	for(int k=l;k<=r;k++)
	  	{
	  		S(l,r,k);
	  		for(int w=1;w<=t;w++)
	  		  if(f[l][r][w]<g[l][k-1][w]+g[k+1][r][w]+bc[w]*cnt[w]||!f[l][r][w])
	  		    f[l][r][w]=g[l][k-1][w]+g[k+1][r][w]+bc[w]*cnt[w],kf[l][r][w]=k;
		}
		for(int w=t;w;w--)
		  if(g[l][r][w+1]>f[l][r][w]) g[l][r][w]=g[l][r][w+1],kg[l][r][w]=kg[l][r][w+1];
	  	  else g[l][r][w]=f[l][r][w],kg[l][r][w]=w;
	  }
	printf("%d\n",g[1][n][1]);
	get(1,n,kg[1][n][1]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值