Keras
文章平均质量分 77
橙子橘啦
计算机研究僧,重度拖延症患者,家里蹲第一名
展开
-
如果你不清楚epoch,iteration和batch_size,一定要看这篇
很多人对这些有自己的理解,这就导致了—百花齐放,成功把人绕晕。比如说1.batch_size因为更新参数是按批次更新的,batch_size就是一个批次batch内的数量。2.iteration完成一次batch的训练3.epoch使用训练集中的全部数据进行一次完整的训练但是对照真正的代码,会很崩溃比如说epoch要不要设置,设置多少为好iteration也是一样有的代码中没有设置epoch,有的代码没有设置iteration,那到底要怎么才能看懂,这些的关系又是什么。手里有样本的总原创 2020-07-19 19:29:26 · 4895 阅读 · 2 评论 -
CNN中的参数记录(上)
最近用Keras写模型,其实CNN的结构相对来说还是比较容易理解的,无非就是参数的抉择1.activition就是激活函数啦,激活函数就是为了增加神经网络的非线性,不让它产生过拟合,常用的也就那么几种,relu,softmax,sigmoid,tanh,一般来说paper中用的较多的是relu,softmax,sigmoid2.padding这个在卷积层和池化层都是可选项,padding='same’表示需要在原图像的边缘补0,目的是使得卷积后的图像还和原图像保持一样大小。比如一个5X5的图片,被原创 2020-07-07 22:48:29 · 368 阅读 · 1 评论 -
手把手教你用Keras框架写CNN(附全部代码和注解)
1:首先你得准备好Pycharm,Anaconda然后是第三方类库numpy,tensorflow,matplotlib,kerasKeras框架能简单上手,高度集成,利用这个框架写出来的CNN就可以作图片识别了。我们这里识别minst数据集。[mnist数据集](链接:https://pan.baidu.com/s/1Jt4p5EYF5mPzhiGGhrMN3A提取码:mz1w)mnist数据集包含60,000个用于训练的示例和10,000个用于测试的示例。这些数字已经过尺寸标准化并位于图像中原创 2020-07-03 20:33:22 · 3624 阅读 · 0 评论