判断
1-2
设只包含根结点的二叉树高度为0,则高度为k的二叉树最小结点数为k+1。 T
1-3
'关于树和二叉树
二叉树是度为 2 的树。F
1-4
具有10个叶结点的二叉树中,有9个度为2的结点。T
1-5
在含有n个结点的树中,边数只能是n-1条。 T
1-6
完全二叉树中,若一个结点没有左孩子,则它必是树叶。 T
1-7
在任意一棵二叉树中,分支结点的数目一定少于叶结点的数目。 F
1-8
二叉树是一种特殊的树。 F
1-9
二叉树只能用二叉链表表示。F
1-10
树形结构中元素之间存在一个对多个的关系。T
1-11
某二叉树的前序和中序遍历序列正好一样,则该二叉树中的任何结点一定都无左孩子。 T
1-13
若一个结点是某二叉树的中序遍历序列的最后一个结点,则它必是该树的前序遍历序列中的最后一个结点。 F
1-14
某二叉树的后序和中序遍历序列正好一样,则该二叉树中的任何结点一定都无右孩子。 T
1-16
若A和B都是一棵二叉树的叶子结点,则存在这样的二叉树,其前序遍历序列为…A…B…,而中序遍历序列为…B…A…。 F
1-18
将一棵完全二叉树存于数组中(根结点的下标为1)。则下标为23和24的两个结点是兄弟。 F
1-19
一棵有124个结点的完全二叉树,其叶结点个数是确定的。 T
1-22
非空的二叉树一定满足:某结点若有左孩子,则其中序前驱一定没有右孩子。 T
1-24
用链表(llink-rlink)存储包含n个结点的二叉树,结点的2n个指针区域中有n-1个空指针。F
1-26
哈夫曼编码是一种最优的前缀码。对一个给定的字符集及其字符频率,其哈夫曼编码不一定是唯一的,但是每个字符的哈夫曼码的长度一定是唯一的。F
1-27
在哈夫曼编码中,当两个字符出现的频率相同时,其编码也相同,对于这种情况应特殊处理。 F
1-28
哈夫曼树的结点个数不能是偶数。T
1-29
哈夫曼树是带权路径长度最短的树,路径上权值较大的结点离根较近。T
1-32
完全二叉树中,若一个结点没有左孩子,则它必是树叶。 T
1-33
一棵有9层结点的完全二叉树(层次从1开始计数),至少有255个结点。 F
1-34
完全二叉树一定存在度为1的结点。F
1-35
完全二叉树中,若一个结点没有左孩子,则它必是树叶。 T
1-36
在一棵由包含4、5、6等等一系列整数结点构成的二叉搜索树中,如果结点4和6在树的同一层,那么可以断定结点5一定是结点4和6的父亲结点。 F
1-38
如果完全二叉树从根结点开始按层次遍历的输入序列为1,2,3,4,5,6,7,则该完全二叉树是二叉排序树。 F
1-39
对两棵具有相同关键字集合而形状不同的二叉排序树,按中序遍历它们得到的序列的顺序却是一致的。 T
1-40
在二叉排序树中,每个结点的关键字都比左孩子关键字大,比右孩子关键字小。T
1-41
在二叉排序树中,新结点总是作为树叶来插入的。T
1-42
二叉排序树的查找效率和二叉排序树的髙度有关。T
选择
2-1
树最适合于用来表示 ( D )
A.有序数据元素
B.无序数据元素
C.元素之间无联系的数据
D.元素之间具有分支层次关系的数据
2-3
设每个d叉树的结点有d个指针指向子树,有n个结点的d叉树有多少空链域? ( C )
A.nd
B.n(d−1)
C.n(d−1)+1
D.以上都不是
2-5
在下述结论中,正确的是: ( A )
① 只有2个结点的树的度为1;
② 二叉树的度为2;
③ 二叉树的左右子树可任意交换;
④ 在最大堆(大顶堆)中,从根到任意其它结点的路径上的键值一定是按非递增有序排列的。
A.①④
B.②④
C.①②③
D.②③④
2-6
如果一棵非空k(k≥2)叉树T中每个非叶子结点都有k个孩子,则称T为正则k叉树。若T有m个非叶子结点,则T中的叶子结点个数为:( C )
A.mk
B.m(k−1)
C.m(k−1)+1
D.m(k−1)−1
2-9
一棵二叉树中,双分支结点数为15,单分支结点数为30,则叶子结点数为( B )个。
A.15
B.16
C.17
D.47
2-11
深度为6的二叉树最多有( B )个结点。
A.64
B.63
C.32
D.31
2-16
一个具有1025个结点的二叉树的高h为( C )个。
A.11
B.10
C.11至1025之间
D.10至1024之间
2-20
若将一棵树 T 转化为对应的二叉树 BT,则下列对 BT 的遍历中,其遍历序列与 T 的后根遍历序列相同的是:( B )
A.先序遍历
B.中序遍历
C.后序遍历
D.按层遍历
2-21
对 n 个互不相同的符号进行哈夫曼编码。若生成的哈夫曼树共有 115 个结点,则 n 的值是:( C )
A.56
B.57
C.58
D.60
2-24
对于图所示二叉树,试给出:
它的顺序存储结构 ( A )
A.ABCDEF^^^ G^^H
B.ABD ^ ^ EG^^^ CF^H
C.DBGE^A ^FHC
D.DGE^ B^ HFC^A
2-25
利用二叉链表存储树,则根结点的右指针是( C )。
A.指向最左孩子
B.指向最右孩子
C.空
D.非空
2-26
在下列存储形式中,( D )不是树的存储形式。
A.双亲表示法
B.孩子链表表示法
C.孩子兄弟表示法
D.顺序存储表示法
2-31
在一棵度为 3 的树中,度为 2 的结点个数是 1,度为 0 的结点个数是 6,则度为 3 的结点个数是 ( A )
A.2
B.3
C.4
D.无法确定
2-32
对于任意一棵高度为 5 且有 10 个结点的二叉树,若采用顺序存储结构保存,每个结点占 1 个存储单元(仅存放结点的数据信息),则存放该二叉树需要的存储单元的数量至少是:( A )
A.31
B.16
C.15
D.10
2-15
某二叉树的中序序列和后序序列正好相反,则该二叉树一定是 ( C )
A.空或只有一个结点
B.高度等于其结点数
C.任一结点无左孩子
D.任一结点无右孩子
2-19
如果二叉树的后序遍历结果是FDEBGCA,中序遍历结果是FDBEACG,那么该二叉树的前序遍历结果是什么? ( C )
A.ABCDEFG
B.ABDFEGC
C.ABDFECG
D.ABDEFCG
2-23
设n、m为一棵二叉树上的两个结点,在中序遍历时,n在m前的条件是 ( A )
A.n在m左方
B.n在m右方
C.n是m祖先
D.n是m子孙
2-30
将 {28, 15, 42, 18, 22, 5, 40} 逐个按顺序插入到初始为空的最小堆(小根堆)中。则该树的前序遍历结果为:( C )
A.5, 18, 15, 28, 22, 42, 40
B.5, 15, 18, 22, 28, 42, 40
C.5, 18, 28, 22, 15, 42, 40
D.5, 15, 28, 18, 22, 42, 40
2-34
将{5, 2, 7, 3, 4, 1, 6}依次插入初始为空的二叉搜索树。则该树的后序遍历结果是:( C )
A.1, 2, 3, 4, 6, 7, 5
B.1, 4, 2, 6, 3, 7, 5
C.1, 4, 3, 2, 6, 7, 5
D.5, 4, 3, 7, 6, 2, 1
2-35
将 {5, 2, 7, 3, 4, 1, 6} 逐个按顺序插入到初始为空的最小堆(小根堆)中。则该树的前序遍历结果为:( D )
A.1, 3, 2, 5, 4, 7, 6
B.1, 2, 3, 4, 5, 7, 6
C.1, 2, 5, 3, 4, 7, 6
D.1, 3, 5, 4, 2, 7, 6
2-39
将{ 3, 8, 9, 1, 2, 6 }依次插入初始为空的二叉搜索树。则该树的后序遍历结果是:( C )
A.2, 1, 3, 6, 9, 8
B.1, 2, 8, 6, 9, 3
C.2, 1, 6, 9, 8, 3
D.1, 2, 3, 6, 9, 8
2-42
二叉树的中序遍历也可以循环地完成。给定循环中堆栈的操作序列如下(其中push为入栈,pop为出栈):
push(1), push(2), push(3), pop(), push(4), pop(), pop(), push(5), pop(), pop(), push(6), pop()
以下哪句是对的?( C )
A.6是根结点
B.2是4的父结点
C.2和6是兄弟结点
D.以上全不对
2-46
要使一棵非空二叉树的先序序列与中序序列相同,其所有非叶结点须满足的条件是:( B )
A.只有左子树
B.只有右子树
C.结点的度均为1
D.结点的度均为2
2-47
已知一棵二叉树的树形如下图所示,其后序序列为{ e, a, c, b, d, g, f }。树中与结点a同层的结点是:( B )
A.c
B.d
C.f
D.g
2-27
设一段文本中包含字符{a, b, c, d, e},其出现频率相应为{3, 2, 5, 1, 1}。则经过哈夫曼编码后,文本所占字节数为: ( C )
A.40
B.36
C.25
D.12
2-28
设一段文本中包含4个对象{a,b,c,d},其出现次数相应为{4,2,5,1},则该段文本的哈夫曼编码比采用等长方式的编码节省了多少位数? ( B )
A.0
B.2
C.4
D.5
2-29
由分别带权为9、2、5、7的四个叶子结点构成一棵哈夫曼树,该树的带权路径长度为: ( C )
A.23
B.37
C.44
D.46
2-33
已知字符集{ a, b, c, d, e, f, g, h }。若各字符的哈夫曼编码依次是 0100, 10, 0000, 0101, 001, 011, 11, 0001,则编码序列 0100011001001011110101 的译码结果是:( D )
A.acgabfh
B.adbagbb
C.afbeagd
D.afeefgd
2-37
在一个用数组表示的完全二叉树中,如果根结点下标为1,那么下标为17和19这两个结点的最近公共祖先结点在哪里(数组下标)? (注:两个结点的“公共祖先结点”是指同时都是这两个结点祖先的结点) ( B )
A.8
B.4
C.2
D.1
2-38
具有1102个结点的完全二叉树一定有__个叶子结点。( B )
A.79
B.551
C.1063
D.不确定
程序填空
5-1
下列代码的功能是将二叉树T中的结点按照层序遍历的顺序输出。
typedef struct TreeNode *Tree;
struct TreeNode
{
int Key;
Tree Left;
Tree Right;
};
void Level_order ( Tree T )
{
Queue Q;
if ( !T ) return;
Q = CreateQueue( MaxElements );
Enqueue( T, Q );
while ( !IsEmpty( Q ) ){
T = Front_Dequeue ( Q ); /* return the front element and delete it from Q */
printf("%d ", T->Key);
if ( T->Left )
Enqueue( T->Left, Q );
if ( T->Right )
Enqueue( T->Right, Q );
}
}
5-2
下列代码的功能是计算给定二叉树T的宽度。二叉树的宽度是指各层结点数的最大值。函数Queue_rear和Queue_front分别返回当前队列Q中队尾和队首元素的位置。
typedef struct TreeNode *BinTree;
struct TreeNode
{
int Key;
BinTree Left;
BinTree Right;
};
int Width( BinTree T )
{
BinTree p;
Queue Q;
int Last, temp_width, max_width;
temp_width = max_width = 0;
Q = CreateQueue(MaxElements);
Last = Queue_rear(Q);
if ( T == NULL) return 0;
else {
Enqueue(T, Q);
while (!IsEmpty(Q)) {
p = Front_Dequeue(Q);
temp_width++;
if ( p->Left != NULL ) Enqueue(p->Left, Q);
if ( p->Right != NULL ) Enqueue (p->Right, Q);
if ( Queue_front(Q) > Last ) {
Last = Queue_rear(Q);
if ( temp_width > max_width ) max_width = temp_width;
temp_width = 0;
} /* end-if */
} /* end-while */
return max_width;
} /* end-else */
}
5-3
本函数的功能是从有N个元素的线性表A中查找第K大的元素。其中函数BuildMinHeap(H, K)
是将元素H[1] ... H[K]
调整为一个最小堆。请完成下列填空。
ElementType FindKthLargest ( int A[], int N, int K )
{ /* it is assumed that K<=N */
ElementType *H;
int i, next, child;
H = (ElementType *)malloc((K+1)*sizeof(ElementType));
for ( i=1; i<=K; i++ ) H[i] = A[i-1];
BuildMinHeap(H, K);
for ( next=K; next<N; next++ ) {
H[0] = A[next];
if ( H[0] > H[1] ) {
for ( i=1; i*2<=K; i=child ) {
child = i*2;
if ( H[child+1]<H[child] ) child++;
if ( H[0]>H[child] )
H[i] = H[child];
else break;
}
H[i] = H[0];
}
}
return H[1];
}
5-4
下列代码的功能是将存有N个元素的数组A[]调整为最小堆。
#define leftchild(i) ( 2*(i)+1 )
void BuildMinHeap( ElementType A[], int N )
{ int i, j, child;
ElementType Tmp;
for ( i = (N-1)/2; i >= 0; i-- ) {
j = i;
for ( Tmp = A[j]; leftchild(j) < N; j = child ) {
child = leftchild(j);
if (child!=N-1 && A[child+1]<A[child])
child ++;
if (Tmp > A[child]) A[j] = A[child];
else break;
}
A[j] = Tmp;
}
}