线性递推式计算模板(知前几项跑第n项,高斯消元+矩阵快速幂)

注:本模板常数较大
本模板适用于:
如果有递推式满足:
f [ n ] = k 0 + k 1 f [ n − 1 ] + k 2 f [ n − 2 ] + . . . . . . + k m f [ n − m ] f[n] =k_0+ k_1f[n-1] + k_2f[n-2]+......+k_mf[n-m] f[n]=k0+k1f[n1]+k2f[n2]+......+kmf[nm]
其中所有数都在有理数的范围中。
可以将前几项丢进vector中,跑出第n项。
这里:提供的项数应该大于 m m m的2倍。

在其中某数不是正整数时:该数表示为乘逆元后取模 m o d mod mod后的等价形式。
如:
− 1 -1 1等价于 1000000006 1000000006 1000000006;
3 / 4 3/4 3/4等价于 3 ∗ 4 − 1 3*4^{-1} 341
(在模 1 e 9 + 7 1e9+7 1e9+7情况下)
这里特别注意:逆元的求法基于小费马定理。但是如果保证系数 k k k均大于等于0,小于某一质数。可以将 m o d mod mod赋值为该质数。高消求出解后。然后将 m o d mod mod赋值为题目中的值。如果无法保证,换用其他方式求逆元。
ps.我在一个视频中发现了这个板子。将前几项丢进vector中,可以跑出第n项。不过由于高糊的视频画质。我只能看着重构。。。原视频的高消貌似是错的。只得重写。且高消为浮点高消,不能取模。。不太理解最后怎么转换的,只得写成取逆元的。全篇不涉及浮点数。。。验证了几组样例和两个简单题。过了。高斯应该是没错。目前缺少题目验证。。后续补充吧。另外相比于视频中:补充了常数数列的情况,追加一个cal函数,其中:

cal_fn:求解第n项值
cal_sum:求解前n项和

均用矩阵快速幂求解。
build时,flag为0不定项,否则为定flag项。
更新:::::
发现个特性,如果输入的数不满足递推式,或者在这几项中求不出。会在后几项失配。。。
下面是模板代码(斐波那契%1e9+7):

#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <vector>
#include <cstdlib>
#define ll long long
using namespace std;
namespace getans
{
    ll mod = 1e9+7;
    vector<ll> v;
    vector<ll> sum;
    ll a[20][20], del;
    ll k;
    struct Ma
    {
        int n;
        ll a[10][10];
    }A;
    void Debug_print(Ma a)
    {
        for (int i = 0; i < a.n; i++)
        {
            for (int j = 0; j < a.n; j++)
                cout << a.a[i][j] << " ";
            cout << endl;
        }
    }
    void Debug_formula()
    {
        printf("f(n) = ");
        for (int i = 0; i < A.n-1; i++)
            printf(" (%lld)*f(n-%d) +", A.a[i][0], i+1);
        printf(" (%lld)\n", A.a[A.n-1][0]);
    }
    ll ksm(ll base,int k){
        ll res=1;
        while(k){
            if(k&1) res=(res*base)%mod;
            base=(base*base)%mod;
            k>>=1;
        }
        return res;
    }
    bool gauss(int n)
    {
        int i,j,k,r;
        for(int i=1; i<=n; i++)
        {
            r=i;
            for( j=i+1; j<=n; j++)
                if(abs(a[j][i])>abs(a[r][i]))r=j;
            if (abs(a[r][i]) < 1e-6) return 0;
            if(r!=i)
                for(j=1; j<=n+1; j++)swap(a[r][j],a[i][j]);
            for(k=i+1; k<=n; k++)
            {
                ll f=a[k][i]*ksm(a[i][i], mod-2) % mod;
                for(j=i; j<=n+1; j++)
                    a[k][j]=(a[k][j]-f*a[i][j]%mod + mod)%mod;
            }
        }
        for(i=n; i>=1; i--)
        {
            for(j=i+1; j<=n; j++)
                a[i][n+1]=(a[i][n+1]-a[j][n+1]*a[i][j]%mod + mod)%mod;
            a[i][n+1]=(a[i][n+1]*ksm(a[i][i],mod-2))%mod;
        }
        return 1;
    }
    void build(vector<ll> V, int flag)
    {
        v = V;
        int n = (v.size() - 1) >>1;
        if (!flag)
        {
            k = n;
            while(1)
            {
                for (int i = 0; i <= k; i++)
                {
                    for (int j = 0; j < k; j++) a[i+1][j+1] = v[n-1+i-j];
                    a[i+1][k+1] = 1;
                    a[i+1][k+2] = v[n+i];
                }
                if (gauss(n+1)){ cout << n + 1 << endl; break;}
                n--; k--;
            }
        }
        else
        {
            k = flag;
            for (int i = 0; i <= k; i++)
            {
                for (int j = 0; j < k; j++) a[i+1][j+1] = v[n-1+i-j];
                a[i+1][k+1] = 1;
                a[i+1][k+2] = v[n+i];
            }
            gauss(k+1);
        }
        A.n = k+1;
        for (int i = 0; i < A.n; i++)
            for (int j = 0; j < A.n; j++)
                A.a[i][j] = 0;
        for (int i = 0; i < A.n; i++) A.a[i][0] = a[i+1][A.n+1];
        for (int i = 0; i < A.n-2; i++)
            A.a[i][i+1] = 1;
        if(A.n > 1)
            A.a[A.n-1][A.n-1] = 1;
    }
    void mul(Ma &c, const Ma & a, const Ma &b, const int &nn)
    {
        Ma res;
        for (int i = 0; i < nn; i++)
        {
            for (int j = 0; j < nn; j++)
            {
                res.a[i][j] = 0;
                for (int k = 0; k < nn; k++)
                    res.a[i][j] = (res.a[i][j] + a.a[i][k]*b.a[k][j]%mod)%mod;
            }
        }
        c = res;
    }
    void _pow(ll n, Ma &ans, Ma &b)
    {
        int nn = ans.n;
        while(n)
        {
            if (n&1) mul(ans, ans, b, nn);
            n>>=1;
            mul(b,b, b, nn);
        }
    }
    ll cal_fn(ll n)
    {
        if (n < v.size()) return v[n]%mod;
        n = n - k +1;
        Ma B, T = A;
        if (A.n == 1) return A.a[0][0];
        B.n = A.n;
        for (int i = 0; i < B.n-1; i++)
        {
            B.a[0][i] = v[B.n-i-2];
        }
        B.a[0][B.n-1] = 1;
        _pow(n, B, T);
        return B.a[0][0]%mod;
    }
    ll cal_sum(ll n)
    {
        if(A.n == 1)return A.a[0][0] * (n+1)%mod;
        sum = v;
        for (int i = 1; i < v.size(); i++) sum[i] += sum[i-1];
        if (n < v.size()) return sum[n];
        n = n - k +1;
        Ma B, T = A;
        int nn = ++T.n;
        if (A.n == 1) return A.a[0][0];
        B.n = A.n+1;
        for (int i = 0; i < B.n; i++)
            for (int j = 0; j < B.n; j++)
                B.a[i][j] = 0;
        for (int i = 0; i < B.n-2; i++)
        {
            B.a[0][i] = v[B.n-i-3];
        }
        T.a[T.n-1][T.n-1] = 1;
        T.a[0][T.n-1] = 1;
        B.a[0][B.n-2] = 1;
        _pow(n+1, B, T);
        return B.a[0][nn-1]%mod;
    }
}
using namespace getans;
int main()
{
    vector<ll> V = {1,1,2,3,5,8};
    getans::build(V, 0);
    getans::Debug_formula();
    ll n;
    while(~scanf("%lld", &n))
       printf("%lld\n",getans::cal_fn(n-1));
    return 0;
}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值