(C语言)04-树7 二叉搜索树的操作集

本题要求实现给定二叉搜索树的5种常用操作。

函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

其中BinTree结构定义如下
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};

函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
函数FindMin返回二叉搜索树BST中最小元结点的指针;
函数**

**返回二叉搜索树BST中最大元结点的指针。

裁判测试程序样例:

#include <stdio.h>
#include <stdlib.h>

typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
    ElementType Data;
    BinTree Left;
    BinTree Right;
};

void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT );  /* 中序遍历,由裁判实现,细节不表 */

BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );

int main()
{
    BinTree BST, MinP, MaxP, Tmp;
    ElementType X;
    int N, i;

    BST = NULL;
    scanf("%d", &N);
    for ( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Insert(BST, X);
    }
    printf("Preorder:"); PreorderTraversal(BST); printf("\n");
    MinP = FindMin(BST);
    MaxP = FindMax(BST);
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        Tmp = Find(BST, X);
        if (Tmp == NULL) printf("%d is not found\n", X);
        else {
            printf("%d is found\n", Tmp->Data);
            if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
            if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
        }
    }
    scanf("%d", &N);
    for( i=0; i<N; i++ ) {
        scanf("%d", &X);
        BST = Delete(BST, X);
    }
    printf("Inorder:"); InorderTraversal(BST); printf("\n");

    return 0;
}
/* 你的代码将被嵌在这里 */

输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3

输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9

BinTree Insert(BinTree BST, ElementType X)

if (!BST) {
		BST = (Position)malloc(sizeof(struct TNode));
		BST->Data = X;
		BST->Right = BST->Left = NULL;
	}
	else {
		if (X < BST->Data)
			BST->Left = Insert(BST->Left, X);
		if (X > BST->Data)
			BST->Right = Insert(BST->Right, X);
	}
	return BST;
}

Position Find(BinTree BST, ElementType X)

Position Find(BinTree BST, ElementType X) {

	while (BST) {
		if (X > BST->Data)
			BST = BST->Right;
		else if (X < BST->Data)
			BST = BST->Left;
		else
			return BST;
	}
	return NULL;
	
}

Position FindMin(BinTree BST)

Position FindMin(BinTree BST) {
	if (!BST)
		return NULL;
	else if (!BST->Left)
			return BST;
	else
			return FindMin(BST->Left);
	
}

Position FindMax(BinTree BST)

Position FindMax(BinTree BST) {
	if (!BST)
		return NULL;
	else if (!BST->Right)
			return BST;
	else
			return FindMax(BST->Right);
	

BinTree Delete( BinTree BST, ElementType X )

BinTree Delete( BinTree BST, ElementType X ){
        BinTree A;
        if(!BST){
            printf("Not Found\n");
            return BST;
        }
        
        else if(X>BST->Data)
        BST->Right=Delete( BST->Right, X );
        else if(X<BST->Data)
        BST->Left=Delete( BST->Left, X );
        else{
            if(BST->Right&&BST->Left){
                A=FindMin(BST->Right);
                BST->Data=A->Data;
                BST->Right= Delete( BST->Right,BST->Data );
            }
            else{
                A=BST;
                if(!BST->Right)
                BST=BST->Left;
                else if(!BST->Left)
                BST=BST->Right;
                free(A);
            }
            }
       
        return BST;
    }
    
    	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值