本题要求实现给定二叉搜索树的5种常用操作。
函数接口定义:
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
其中BinTree结构定义如下:
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
函数Insert将X插入二叉搜索树BST并返回结果树的根结点指针;
函数Delete将X从二叉搜索树BST中删除,并返回结果树的根结点指针;如果X不在树中,则打印一行Not Found并返回原树的根结点指针;
函数Find在二叉搜索树BST中找到X,返回该结点的指针;如果找不到则返回空指针;
函数FindMin返回二叉搜索树BST中最小元结点的指针;
函数**
**返回二叉搜索树BST中最大元结点的指针。
裁判测试程序样例:
#include <stdio.h>
#include <stdlib.h>
typedef int ElementType;
typedef struct TNode *Position;
typedef Position BinTree;
struct TNode{
ElementType Data;
BinTree Left;
BinTree Right;
};
void PreorderTraversal( BinTree BT ); /* 先序遍历,由裁判实现,细节不表 */
void InorderTraversal( BinTree BT ); /* 中序遍历,由裁判实现,细节不表 */
BinTree Insert( BinTree BST, ElementType X );
BinTree Delete( BinTree BST, ElementType X );
Position Find( BinTree BST, ElementType X );
Position FindMin( BinTree BST );
Position FindMax( BinTree BST );
int main()
{
BinTree BST, MinP, MaxP, Tmp;
ElementType X;
int N, i;
BST = NULL;
scanf("%d", &N);
for ( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Insert(BST, X);
}
printf("Preorder:"); PreorderTraversal(BST); printf("\n");
MinP = FindMin(BST);
MaxP = FindMax(BST);
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
Tmp = Find(BST, X);
if (Tmp == NULL) printf("%d is not found\n", X);
else {
printf("%d is found\n", Tmp->Data);
if (Tmp==MinP) printf("%d is the smallest key\n", Tmp->Data);
if (Tmp==MaxP) printf("%d is the largest key\n", Tmp->Data);
}
}
scanf("%d", &N);
for( i=0; i<N; i++ ) {
scanf("%d", &X);
BST = Delete(BST, X);
}
printf("Inorder:"); InorderTraversal(BST); printf("\n");
return 0;
}
/* 你的代码将被嵌在这里 */
输入样例:
10
5 8 6 2 4 1 0 10 9 7
5
6 3 10 0 5
5
5 7 0 10 3
输出样例:
Preorder: 5 2 1 0 4 8 6 7 10 9
6 is found
3 is not found
10 is found
10 is the largest key
0 is found
0 is the smallest key
5 is found
Not Found
Inorder: 1 2 4 6 8 9
BinTree Insert(BinTree BST, ElementType X)
if (!BST) {
BST = (Position)malloc(sizeof(struct TNode));
BST->Data = X;
BST->Right = BST->Left = NULL;
}
else {
if (X < BST->Data)
BST->Left = Insert(BST->Left, X);
if (X > BST->Data)
BST->Right = Insert(BST->Right, X);
}
return BST;
}
Position Find(BinTree BST, ElementType X)
Position Find(BinTree BST, ElementType X) {
while (BST) {
if (X > BST->Data)
BST = BST->Right;
else if (X < BST->Data)
BST = BST->Left;
else
return BST;
}
return NULL;
}
Position FindMin(BinTree BST)
Position FindMin(BinTree BST) {
if (!BST)
return NULL;
else if (!BST->Left)
return BST;
else
return FindMin(BST->Left);
}
Position FindMax(BinTree BST)
Position FindMax(BinTree BST) {
if (!BST)
return NULL;
else if (!BST->Right)
return BST;
else
return FindMax(BST->Right);
BinTree Delete( BinTree BST, ElementType X )
BinTree Delete( BinTree BST, ElementType X ){
BinTree A;
if(!BST){
printf("Not Found\n");
return BST;
}
else if(X>BST->Data)
BST->Right=Delete( BST->Right, X );
else if(X<BST->Data)
BST->Left=Delete( BST->Left, X );
else{
if(BST->Right&&BST->Left){
A=FindMin(BST->Right);
BST->Data=A->Data;
BST->Right= Delete( BST->Right,BST->Data );
}
else{
A=BST;
if(!BST->Right)
BST=BST->Left;
else if(!BST->Left)
BST=BST->Right;
free(A);
}
}
return BST;
}