这道题答案都在PPT上,所以先学会再写的话并不难。
1、BinTree Insert( BinTree BST, ElementType X )
递归实现,小就进左子树,大就进右子树。
为空就新建结点插入。
BinTree Insert( BinTree BST, ElementType X )
{
if(!BST)
{
BST=(BinTree)malloc(sizeof(struct TNode));
BST->Data=X;
BST->Left=BST->Right=NULL;
return BST;
}
if(X < BST->Data)BST->Left=Insert(BST->Left,X);
else if(X > BST->Data)BST->Right=Insert(BST->Right,X);
return BST;
}
2、BinTree Delete( BinTree BST, ElementType X )
递归遍历直到找到该节点,才准备删除。
而删除结点有两种方法,一种是删左子树的最大值,一种是删右子树的最小值,这里我们取后者。
找到右子树最小值替换该结点的值,然后删除右子树的该结点
如果最多只有一个子树,则直接修改指针为该子树根节点即可。
BinTree Delete( BinTree BST, ElementType X )
{
Position tmp;
if(!BST)printf("Not Found\n");
else{
if(X<BST->Data)BST->Left=Delete(BST->Left,X);
else if(X>BST->Data)BST->Right=Delete(BST->Right,X);
else
{
if(BST->Left&&BST->Right)
{
tmp=FindMin(BST->Right);
BST->Data=tmp->Data;
BST->Right=Delete(BST->Right,BST->Data);
}
else {
tmp=BST;
if(!BST->Left)BST=BST->Right;
else BST=BST->Left;
free(tmp);
}
}
}
return BST;
}
3、Position Find( BinTree BST, ElementType X )
递归遍历数,小就找左,大就找右直到找到。
Position Find( BinTree BST, ElementType X )
{
if(!BST)return NULL;
if(X>BST->Data)return Find(BST->Right,X);
else if(X<BST->Data)return Find(BST->Left,X);
else return BST;
}
4、Position FindMin( BinTree BST )
递归只找左子树到尽头
Position FindMin( BinTree BST )
{
if(!BST)return NULL;
else if(!BST->Left)return BST;
else return FindMin(BST->Left);
}
5、Position FindMax( BinTree BST )
递归只找右子树到尽头
Position FindMax( BinTree BST )
{
if(!BST)return NULL;
else if(!BST->Right)return BST;
else return FindMax(BST->Right);
}
6、完整代码
BinTree Insert( BinTree BST, ElementType X )
{
if(!BST)
{
BST=(BinTree)malloc(sizeof(struct TNode));
BST->Data=X;
BST->Left=BST->Right=NULL;
return BST;
}
if(X < BST->Data)BST->Left=Insert(BST->Left,X);
else if(X > BST->Data)BST->Right=Insert(BST->Right,X);
return BST;
}
BinTree Delete( BinTree BST, ElementType X )
{
Position tmp;
if(!BST)printf("Not Found\n");
else{
if(X<BST->Data)BST->Left=Delete(BST->Left,X);
else if(X>BST->Data)BST->Right=Delete(BST->Right,X);
else
{
if(BST->Left&&BST->Right)
{
tmp=FindMin(BST->Right);
BST->Data=tmp->Data;
BST->Right=Delete(BST->Right,BST->Data);
}
else {
tmp=BST;
if(!BST->Left)BST=BST->Right;
else BST=BST->Left;
free(tmp);
}
}
}
return BST;
}
Position Find( BinTree BST, ElementType X )
{
if(!BST)return NULL;
if(X>BST->Data)return Find(BST->Right,X);
else if(X<BST->Data)return Find(BST->Left,X);
else return BST;
}
Position FindMin( BinTree BST )
{
if(!BST)return NULL;
else if(!BST->Left)return BST;
else return FindMin(BST->Left);
}
Position FindMax( BinTree BST )
{
if(!BST)return NULL;
else if(!BST->Right)return BST;
else return FindMax(BST->Right);
}