POJ1947 Rebuilding Roads 树形DP

12 篇文章 0 订阅

题意:给你一棵树,然后问你最少切多少刀可以剩下p个节点
n,p<=200吧,大概。
又是经典模型,设f[i,j]表示以i为根的子树中,最少去掉多少条边能剩下j个节点。
那么就是分类讨论咯。。
设v是x的子树,x是当前节点
有:
1.不切v子树,那么就有f[i,j]=min(f[i,j],f[i,k]+f[v,j-k]);(0<=k<=j)
2.切,那么直接f[i,j]++就可以了。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define inf 2147483647/3
using namespace std;
int i,n,m,p=0;
const int N=1e5+6;
int a[N],go[N],next[N],head[N],f[3000][3000],tot;
inline void add(int x,int y)
{
    go[++tot]=y;
    next[tot]=head[x];
    head[x]=tot;
}
inline void dfs(int x,int fa)
{
    int i,v;
    i=head[x];
    fo(i,0,p)f[x][i]=inf;
    f[x][1]=0;
    i=head[x];
    while (i)
    {
        v=go[i];
        if (v!=fa)
        {
            dfs(v,x);
            for(int j=p;j>=1;j--)
            {
                int tmp=f[x][j]+1;
                fo(k,0,j)
                tmp=min(tmp,f[x][k]+f[v][j-k]);
                f[x][j]=tmp;
            }
        }
        i=next[i];
    }
}
int main()
{
    scanf("%d%d",&n,&p);
    fo(i,1,n-1)
    {
        int x,y;
        scanf("%d%d",&x,&y);
        add(x,y);
        add(y,x);
    }
    dfs(1,0);
    int ans=f[1][p];
    fo(i,1,n)
    ans=min(ans,f[i][p]+1);
    printf("%d\n",ans);
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值