Description
一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵。给定n,d1, d2, …, dn,编程需要输出满足d(vi)=di的树的个数。
Input
第一行是一个正整数n,表示树有n个结点。第二行有n个数,第i个数表示di,即树的第i个结点的度数。其中1<=n<=150,输入数据保证满足条件的树不超过10^17个。
Output
输出满足条件的树有多少棵。
Sample Input
4
2 1 2 1
Sample Output
2
HINT
Source
prufer编码的所有可能,用组合数学算。
(n - 2) ! / ( (d1 - 1)! (d2 - 1)! ……(dn - 1)! ) 虽然答案不会爆long long,但中间值也会爆的,所以要分解质因数来做
code:
#include <cstdio>
#include <cstring>
#include <string>
#include <iostream>
using namespace std;
#define MAXN 500
int cnt[MAXN]={0};
int d[MAXN]={0};
int n,sum;
inline void cal(int x, int key)
{
for (int i = 2; i <= x; i++)
if (x % i == 0)
{
while (x % i == 0 && x > 0)
cnt[i] += key, x /= i;
}
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i++)
{
scanf("%d", &d[i]);
sum += d[i];
if (d[i] == 0 && n > 1)
{
printf("0\n");
return 0;
}
}
if (sum != n * 2 - 2)
{
printf("0\n");
return 0;
}
if (n == 1)
{
printf("1\n");
return 0;
}
for (int i = 2; i <= n - 2; i++)
cal(i, 1);
for (int i = 1; i <= n; i++)
for (int j = 2; j <= d[i] - 1; j++)
cal(j, -1);
long long ans = 1;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= cnt[i]; j++)
ans *= i;
printf("%lld\n", ans);
}

本文介绍如何使用Prüfer序列计算给定结点度数条件下不同树的数量。通过组合数学的方法,利用Prüfer序列的性质,计算出所有可能的树的数量,并提供了一段C++代码实现。
554

被折叠的 条评论
为什么被折叠?



