【GDOI2017第四轮模拟day1】数列

本文介绍了GDOI2017第四轮模拟赛中的一道关于数列的问题。为解决不超过14位数列的排列问题,作者提出了采用折半搜索的方法,预处理数字和位置的关系,计算逆序对的数量。通过先处理一半数字的全排列,再结合剩余数字,避免重复,以此优化计算效率。
摘要由CSDN通过智能技术生成

。。这题有毒。
既然不超过十四个位置,我们折半搜索一下,先预处理出所有的可以用的数字和位置,注意这两个的下标是相同的!!!
然后再预处理出c[i][j]表示把remain[i]放在b[j]位置的逆序对数量,当然,我们要先把已有的逆序对数量减去。
然后分成两半,左右各跑全排列,算方案数。
具体的话,就是分成两半(注意组合算,否则会算重),然后先算左边,然后右边就用左边没有用过的数字,至于逆序对数,可以用预处理的c快速算出。
折半搜索就是meet in the middle。。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
int n,m;
const int N=1e5+5;
typedef long long ll;
ll ans;
bool bz[N],vis[N],flag[N];
int g[N],q[N];
int b[N],a[N],c[30][30],remain[N],sum[N],d[N];
int read()
{
    int x=0,f=1;char ch=getchar();
    while (ch<'0'||ch>'9')
    {
        if(ch=='-')f=-1;
        ch=getchar();
    }
    while (ch>='0'&&ch<='9')
    {
        x=x*10+ch-'0';
        ch=getchar();
    }
    return x*f;
}

inline void dfs2(int x,int y)
{
    if (x>y)
    {
        int tmp=0;
        fo(i,1,y)
        {
            tmp+=c[g[i]][i]+g[i]-1;
            fo(j,1,i-1)if (g[j]>g[i])tmp++;
            fo(j,1,y)if (g[j]<g[i])tmp--;
        }
        sum[tmp]++;
        return;
    }
    fo(i,1,y)
    if (!vis[i])
    {
        g[x]=d[i];
        vis[i]=1;
        dfs2(x+1,y);
        vis[i]=0;
    }
}
inline void dfs3(int x,int y)
{
    if (x>y)
    {
        int tmp=0;
        fo(i,1,y)
        {
            tmp+=c[g[i]][i+n/2];
            fo(j,1,i-1)
            if (g[j]>g[i])tmp++;
        }
        if (tmp<=m)ans+=sum[m-tmp];
        return;
    }
    fo(i,1,y)
    if (!vis[i])
    {
        g[x]=q[i];
        vis[i]=1;
        dfs3(x+1,y);
        vis[i]=0;
    }
}
inline void solve()
{
    memset(sum,0,sizeof(sum));
    dfs2(1,n/2);
    int cnt=0;
    fo(i,1,n/2)vis[d[i]]=1;
    fo(i,1,n)if (!vis[i])q[++cnt]=i;
    fo(i,1,n/2)vis[d[i]]=0;
    dfs3(1,cnt);
}
inline void dfs1(int x,int last)
{
    if (x==n/2)
    {
        solve();
        return;
    }
    fo(i,last+1,n)
    if (!flag[i])
    {
        flag[i]=1;
        d[x+1]=i;
        dfs1(x+1,i);
        flag[i]=0;
    }
}
int main()
{
    freopen("sequence.in","r",stdin);
    freopen("sequence.out","w",stdout);
    scanf("%d%d",&n,&m);
    int tot=0;
    fo(i,1,n)
    {
        scanf("%d",&a[i]);
        if (!a[i])b[++tot]=i;
        else bz[a[i]]=1;
    }
    int cnt=0;
    fo(i,1,n)
    if (!bz[i])
    remain[++cnt]=i;
    fo(i,1,n-1)
    if (a[i])
    fo(j,i+1,n)
    if (a[j]&&a[j]<a[i])m--;
    fo(i,1,tot)
    fo(j,1,tot)//put remain[i] into b[j]
    {
        fo(k,1,b[j]-1)
        if (a[k]>remain[i])c[i][j]++;
        fo(k,b[j]+1,n)
        if (a[k]&&a[k]<remain[i])c[i][j]++;
    }
    n=tot;
    dfs1(0,0);
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值