bzoj1744 [Usaco2005 oct]Skiing 奶牛滑雪

1 篇文章 0 订阅

其实是很简单的spfa,但是出题人卡精度卡的丧心病狂= =。。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
#define inf 1000000000
using namespace std;
const int N=1e5+5;
int a[N];
const int M=1e3+5;
typedef double db;
const db eps=1e-6;
int mp[M][M];
bool vis[M][M];
struct node
{
    int x,y;
}q[N];
int ans,v;
const int dx[4]={0,1,0,-1};
const int dy[4]={1,0,-1,0};
int n,m;
db speed[N],dis[M][M];
bool inr(int x,int y)
{
    if (x<=n&&x>=1&&y<=m&&y>=1)return 1;
    return 0;
}
unsigned int t,w;
inline void add(int x,int y,double z)
{
    if (z<dis[x][y])
    {
        dis[x][y]=z;
        if (vis[x][y])return;
        vis[x][y]=1,q[++w].x=x,q[w].y=y;
    }
}

int main()
{
    scanf("%d%d%d",&v,&n,&m);
    fo(i,1,n)
    {
        fo(j,1,m)scanf("%d",&mp[i][j]);
    }
    speed[100]=1;
    fo(i,1,100)speed[i+100]=speed[i+99]*2;
    fd(i,99,1)speed[i]=speed[i+1]/2;
    fo(i,1,n)
    fo(j,1,m)dis[i][j]=1e10;
    add(1,1,0);
    t=1;
    while (t!=w+1)
    {
        int x=q[t].x,y=q[t++].y;
            fo(k,0,3)
            {
                int x1=x+dx[k];
                int y1=y+dy[k];
                if (inr(x1,y1))
                {
                    add(x1,y1,dis[x][y]+speed[mp[x][y]-mp[1][1]+100]);
                }
            }
            vis[x][y]=0;
    }
    /*fo(i,1,n)
    {
        fo(j,1,m)printf("%.2lf(%.2lf) ",dis[i][j],speed[i][j]);
        printf("\n");
    }*/
    printf("%.2f",1.0*dis[n][m]/v);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 牛牛和她的朋友们正在玩一个有趣的游戏,他们需要构建一个有 $n$ 个节点的无向图,每个节点都有一个唯一的编号并且编号从 $1$ 到 $n$。他们需要从节点 $1$ 到节点 $n$ 找到一条最短路径,其中路径长度是经过的边权的和。为了让游戏更有趣,他们决定在图上添加一些额外的边,这些边的权值都是 $x$。他们想知道,如果他们添加的边数尽可能少,最短路径的长度最多会增加多少。 输入格式 第一行包含两个正整数 $n$ 和 $m$,表示节点数和边数。 接下来 $m$ 行,每行包含三个整数 $u_i,v_i,w_i$,表示一条无向边 $(u_i,v_i)$,权值为 $w_i$。 输出格式 输出一个整数,表示最短路径的长度最多会增加多少。 数据范围 $2 \leq n \leq 200$ $1 \leq m \leq n(n-1)/2$ $1 \leq w_i \leq 10^6$ 输入样例 #1: 4 4 1 2 2 2 3 3 3 4 4 4 1 5 输出样例 #1: 5 输入样例 #2: 4 3 1 2 1 2 3 2 3 4 3 输出样例 #2: 2 算法 (BFS+最短路) $O(n^3)$ 我们把问题转化一下,假设原图中没有添加边,所求的就是点 $1$ 到点 $n$ 的最短路,并且我们已经求出了这个最短路的长度 $dis$。 接下来我们从小到大枚举边权 $x$,每次将 $x$ 加入图中,然后再次求解点 $1$ 到点 $n$ 的最短路 $dis'$,那么增加的最短路长度就是 $dis'-dis$。 我们发现,每次加入一个边都需要重新求解最短路。如果我们使用 Dijkstra 算法的话,每次加入一条边需要 $O(m\log m)$ 的时间复杂度,总的时间复杂度就是 $O(m^2\log m)$,无法通过本题。因此我们需要使用更优秀的算法。 观察到 $n$ 的范围比较小,我们可以考虑使用 BFS 求解最短路。如果边权均为 $1$,那么 BFS 可以在 $O(m)$ 的时间复杂度内求解最短路。那么如果我们只是加入了一条边的话,我们可以将边权为 $x$ 的边看做 $x$ 条边的组合,每次加入该边时,我们就在原始图上添加 $x$ 条边,边权均为 $1$。这样,我们就可以使用一次 BFS 求解最短路了。 但是,我们不得不考虑加入多条边的情况。如果我们还是将边权为 $x$ 的边看做 $x$ 条边的组合,那么我们就需要加入 $x$ 条边,而不是一条边。这样,我们就不能使用 BFS 了。 但是,我们可以使用 Floyd 算法。事实上,我们每次加入边时,只有边权等于 $x$ 的边会发生变化。因此,如果我们枚举边权 $x$ 时,每次只需要将边权等于 $x$ 的边加入图中,然后使用 Floyd 算法重新计算最短路即可。由于 Floyd 算法的时间复杂度为 $O(n^3)$,因此总的时间复杂度为 $O(n^4)$。 时间复杂度 $O(n^4)$ 空间复杂度 $O(n^2)$ C++ 代码 注意点:Floyd算法计算任意两点之间的最短路径,只需要在之前的路径基础上加入新的边构成的新路径进行更新即可。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值