一套题目考两道DP有意思?= =
题意略。
一开始其实想的接近正解了,但是后面就歪了,莫名其妙搞到30分= =。。
%%%world_wide_D,AK大佬,瑟瑟发抖。
一开始先把dp[i][j]预处理出来,表示A的前i位和B的前j位的最长公共子序列长度。
然后设f[i][j]表示A的前i位和B的前j位中长度为dp[i][j]的序列的出现次数。
那么求出dp以后明显有两种转移:
不选择i:f[i][j]+=f[i-1][j](dp[i-1][j]==dp[i][j])
选择i:f[i][j]+=f[i-1][p-1]
p为B串前j 个字符中最靠后的与A[i]相同的字符的位置,
若dp[i− 1][p− 1] + 1 == dp[i][j],则f[i][j]+=f[i-1][p-1]最终的答案即为f[n][m]。
这个应该还是挺好理解的,因为从p到j这一段的f都是相同的,所以预处理出p以后直接更新就好了。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=1e3+5;
const int mo=1e9+7;
int dp[N][N],f[N][N],g[N][30];
int n,m;
int pos[N];
char s1[N],s2[N];
int main()
{
scanf("%s",s1+1);
scanf("%s",s2+1);
n=strlen(s1+1);
m=strlen(s2+1);
fo(i,1,n)
{
fo(j,1,m)
{
dp[i][j]=max(dp[i-1][j],dp[i][j-1]);
if (s1[i]==s2[j])dp[i][j]=max(dp[i][j],dp[i-1][j-1]+1);
}
}
memset(pos,-1,sizeof(pos));
fo(i,1,m)
{
pos[s2[i]-'a']=i;
fo(j,0,25)g[i][j]=pos[j];
}
fo(i,0,n)f[i][0]=1;
fo(i,0,m)f[0][i]=1;
fo(i,1,n)
{
fo(j,1,m)
{
f[i][j]=0;
int p=g[j][s1[i]-'a'];
if (dp[i-1][j]==dp[i][j])f[i][j]=(f[i][j]+f[i-1][j])%mo;
else if (p!=-1&&dp[i-1][p-1]+1==dp[i][j])
f[i][j]=(f[i][j]+f[i-1][p-1])%mo;
}
}
printf("%d\n",f[n][m]);
}