bzoj1977 [BeiJing2010组队]次小生成树 倍增

9 篇文章 0 订阅
8 篇文章 0 订阅

标准的次小生成树(严格次小)
先想想不严格怎么做(好像都差不多)
枚举每一条边来更新,这是n^2算法。
然后这题的话我们对于每一个点,预处理,倍增一下求他到他的第2^j个父亲所经过的边的最大值和次大值。
然后我们先求出最小生成树,然后对于最小生成树上相邻两个点之间所有边,记录最大值和所选的边的差,如果最大值和原来的边相等就换成次大值,最后答案就是最小生成树+最小差值。

#include<cstdio>
#include<algorithm>
#include<cstring>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=3e5+5;
int head[N],f[N],dep[N],fa[N][17];
int d1[N][17],d2[N][17];
const int inf=0x7fffffff;
struct node
{
    int x,y,z;
    bool sel;
}a[N];
int next[N],go[N],val[N];
int tot,n,m,cnt,mn=inf;;
typedef long long ll;
ll ans;
bool cmp(node a,node b)
{
    return a.z<b.z;
}
inline void add(int x,int y,int z)
{
    go[++tot]=y;
    val[tot]=z;
    next[tot]=head[x];
    head[x]=tot;
} 
inline void ins(int x,int y,int z)
{
    add(x,y,z);
    add(y,x,z);
}
inline int find(int x)
{
    return x==f[x]?x:find(f[x]);
}
inline void dfs(int x,int f)
{
    fo(i,1,16)
    {
        if (dep[x]<(1<<i))break;
        fa[x][i]=fa[fa[x][i-1]][i-1];
        d1[x][i]=max(d1[x][i-1],d1[fa[x][i-1]][i-1]);
        if (d1[x][i-1]==d1[fa[x][i-1]][i-1])
            d2[x][i]=max(d2[x][i-1],d2[fa[x][i-1]][i-1]);
        else
        {
            d2[x][i]=min(d1[x][i-1],d1[fa[x][i-1]][i-1]);
            d2[x][i]=max(d2[x][i-1],d2[x][i]);
            d2[x][i]=max(d2[x][i],d2[fa[x][i-1]][i-1]);
        } 
    } 
    for(int i=head[x];i;i=next[i])
    {
        int v=go[i];
        if (v!=f)
        {
            fa[v][0]=x;
            d1[v][0]=val[i];
            dep[v]=dep[x]+1;
            dfs(v,x);
        }
    }
}
inline int lca(int x,int y)
{
    if (dep[x]<dep[y])swap(x,y);
    fd(i,16,0)
    if (dep[fa[x][i]]>=dep[y])x=fa[x][i];
    if (x==y)return x;
    fd(i,16,0)
    if (fa[x][i]!=fa[y][i])
    {
        x=fa[x][i];
        y=fa[y][i];
    }
    return fa[x][0];
}
inline void cal(int x,int f,int v)
{
    int mx1=0,mx2=0;
    int t=dep[x]-dep[f];
    fo(i,0,16)
    {
        if (t&(1<<i))
        {
            if(d1[x][i]>mx1)
            {
                mx2=mx1;
                mx1=d1[x][i];
            }
            mx2=max(mx2,d2[x][i]);
            x=fa[x][i];
        }
    }
    if (mx1!=v)mn=min(mn,v-mx1);
    else mn=min(mn,v-mx2);
}
inline void solve(int t,int v)
{
    int x=a[t].x,y=a[t].y,f=lca(x,y);
    cal(x,f,v),cal(y,f,v);
}
int main()
{
    scanf("%d%d",&n,&m);
    fo(i,1,n)f[i]=i;
    fo(i,1,m)scanf("%d%d%d",&a[i].x,&a[i].y,&a[i].z);
    sort(a+1,a+1+m,cmp);
    int count=0;
    fo(i,1,m)
    {
        int fx=find(a[i].x),fy=find(a[i].y);
        if (fx!=fy)
        {
            f[fx]=fy;
            ans+=a[i].z;
            a[i].sel=1;
            ins(a[i].x,a[i].y,a[i].z);
            count++;
            if (count==n-1)break;
        }
    }
    dfs(1,0);
    fo(i,1,m)
        if (!a[i].sel)solve(i,a[i].z);
    printf("%lld\n",ans+mn);
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值