题意:n个男生m个女生坐成一排,任意一段两者数量之差<=k,求方案数,n,m<=150,k<=20.
这种题都没切我无颜面见江东父老orz。
下意识去找性质,发现好像连续的长度不能超过k?然后想着设f[i][j]表示当前做到第i个位置,最长连续01长度为j的方案数,转移挺好写,问题是前面有的段可能会不符合代价。
比如我k=4,然后000110000就GG了。
事实证明,n,k那么小,吃饱了撑着才去寻找性质,直接暴力DP就好了啊,我丝薄吗。。
设f[i][j][k1][k2],表示当前有n个男生,m个女生,其后缀中男女最大差为k1,女男最大差为k2,转移很显然。
#include<cstdio>
#include<algorithm>
#include<cstring>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=155;
const int mo=1234567;
int n,m,k;
int f[N][N][25][25];
int main()
{
scanf("%d%d%d",&n,&m,&k);
f[0][0][0][0]=1;
fo(i,0,n)
{
fo(j,0,m)
{
fo(k1,0,min(k,i))
fo(k2,0,min(k,j))
{
if (i<n&&k1<k)
{
f[i+1][j][k1+1][max(0,k2-1)]+=f[i][j][k1][k2];
f[i+1][j][k1+1][max(0,k2-1)]%=mo;
}
if (j<m&&k2<k)
{
f[i][j+1][max(0,k1-1)][k2+1]+=f[i][j][k1][k2];
f[i][j+1][max(0,k1-1)][k2+1]%=mo;
}
}
}
}
int ans=0;
fo(i,0,k)
fo(j,0,k)
{
ans=(ans+f[n][m][i][j])%mo;
}
printf("%d\n",ans%mo);
}