bzoj1037[ZJOI2008]生日聚会Party DP

168 篇文章 0 订阅

题意:n个男生m个女生坐成一排,任意一段两者数量之差<=k,求方案数,n,m<=150,k<=20.
这种题都没切我无颜面见江东父老orz。
下意识去找性质,发现好像连续的长度不能超过k?然后想着设f[i][j]表示当前做到第i个位置,最长连续01长度为j的方案数,转移挺好写,问题是前面有的段可能会不符合代价。
比如我k=4,然后000110000就GG了。
事实证明,n,k那么小,吃饱了撑着才去寻找性质,直接暴力DP就好了啊,我丝薄吗。。
设f[i][j][k1][k2],表示当前有n个男生,m个女生,其后缀中男女最大差为k1,女男最大差为k2,转移很显然。

#include<cstdio>
#include<algorithm>
#include<cstring>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
const int N=155;
const int mo=1234567;
int n,m,k;
int f[N][N][25][25];
int main()
{
    scanf("%d%d%d",&n,&m,&k);
    f[0][0][0][0]=1;
    fo(i,0,n)
    {
        fo(j,0,m)
        {
            fo(k1,0,min(k,i))
            fo(k2,0,min(k,j))
            {
                if (i<n&&k1<k)
                {
                    f[i+1][j][k1+1][max(0,k2-1)]+=f[i][j][k1][k2];
                    f[i+1][j][k1+1][max(0,k2-1)]%=mo;
                }
                if (j<m&&k2<k)
                {
                    f[i][j+1][max(0,k1-1)][k2+1]+=f[i][j][k1][k2];
                    f[i][j+1][max(0,k1-1)][k2+1]%=mo;
                }
            }
        }
    }
    int ans=0;
    fo(i,0,k)
    fo(j,0,k)
    {
        ans=(ans+f[n][m][i][j])%mo;
    }
    printf("%d\n",ans%mo);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值