不要慌乱,找找规律。
给定长度为n的无0数组a,要求找到一个无0的数组b,让b的每一项和对应a项做积,然后求和为0
用到知识点:数论,鸽笼原理
首先,长度为偶数的情况
我们但看两项,a0 a1
设b1=-a0 b0=a1
那么b1a1+b0a0=-a1a0+a1a0=0
我们再看奇数情况
奇数情况下我们只需要从后向前取3个数 姑且记为a1 a2 a3
根据鸽笼原理必然有两个数大于0或者小于0
我们设b1=-a3 b2=-a3 b3=a1+a2
a1b1+a2b2+a3b3=-a1a3-a2a3+a3(a1+a2)=0
根据这个就很容易写了
需要注意的是根据鸽笼原理,n为奇数是取得三个数中必然有两个大于0或两个小于0,所以必然有两个数相加是不等于0的,但是未必是a b c中的b和c,也可能是a和c或者a和b
#include <bits/stdc++.h>
using namespace std;
int main()
{
int t;
//freopen("in.txt","r",stdin);
for(cin>>t;t;t--)
{
int a[100000+10];
int n;
cin>>n;
for(int i=0;i<n;i++)
{
cin>>a[i];
}
if(n%2==0)
{
for(int i=0;i<n;i+=2)
{
cout<<-a[i+1]<<" "<<a[i]<<" ";
}
cout<<endl;
}
else
{
for(int i=0;i<n-3;i+=2)
{
cout<<-a[i+1]<<" "<<a[i]<<" ";
}
if(a[n-2]+a[n-3]!=0)
cout<<-a[n-1]<<" "<<-a[n-1]<<" "<<a[n-2]+a[n-3]<<endl;
else if(a[n-3]+a[n-1]!=0)
cout<<-a[n-2]<<" "<<a[n-3]+a[n-1]<<" "<<-a[n-2]<<endl;
else
cout<<a[n-1]+a[n-2]<<" "<<-a[n-3]<<" "<<-a[n-3]<<endl;
}
}
return 0;
}