h2o搭建和添加算法(初步)

本文详细介绍了如何在H2O框架中构建和添加新算法。首先,通过搭建H2O的Windows环境,然后在h2o-algos模块下复制并修改现有算法(如KMeans)来创建新算法。接着,需要在相应的schema和API中注册新算法,并生成MOJO模型。此过程为开发者提供了一个在H2O中实现自定义算法的基本步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

H2O搭建和添加算法(初步)

h2o编译环境搭建

h2o Windows的环境搭建,参考https://github.com/h2oai/h2o-3
在这里插入图片描述

在h2o中加入新的算法

谷歌翻译见谅,在构建过程中,让我们看看我们得到了什么。这里有4个最受关注的顶级目录:
• h2o-core:核心H2O系统-包括群集,云计算,分布式执行,分布式键值存储,Web,REST和JSON接口。我们将在这里查看代码和javadocs-有很多有用的实用程序-但不会对其进行更改。
• h2o-algos:大多数算法都在哪里,包括GLM和DeepLearning。我们将复制该Example算法并将其转换为K-Means算法。
• h2o-web:Web界面和JavaScript。我们将在项目中从此处使用jar文件,但可能无需查看代码。
• h2o-app:一个很小的示例应用程序,它驱动h2o-core和h2o-algos,包括我们入侵的应用程序。我们将在此处添加一行以向H2O教授我们的新算法。

  1. 参考kmeans算法实现,注册算法,在h2o-algos.src.main.java.hex中添加一个包kmeans2,将h2o-algos.src.main.java.hex.kmeans包下的内容拷贝至新建的包下,并修改对应的类名称;在这里插入图片描述

  2. 在h2o-algos.src.main.java.hex.schemas下拷贝KMeansV3的类,并修改相关名称;在这里插入图片描述

  3. c. h2o-algos.src.main.java.hex.api下,注册新加的算法。在这里插入图片描述

  4. 添加相关的api注册在这里插入图片描述

  5. 添加模型mojo
    在这里插入图片描述

  6. 添加模型mojo在这里插入图片描述
    在这里插入图片描述

  7. 页面中显示了这个算法在这里插入图片描述
    本文提供了一种在h2o中添加自定义算法的简单思路,水平有限,有误之处望各位指正。

要在Sparkling Water中结合使用H2O的机器学习算法与Apache Spark进行数据处理分析,你可以遵循以下步骤。首先,确保你的Spark环境已经安装了H2O的插件。然后,你可以使用H2OContext,这是连接SparkH2O的桥梁。通过创建H2OContext,你能够将H2O算法嵌入到Spark作业中。 参考资源链接:[Sparkling Water 2.0: 深入了解下一代Apache Spark上的机器学习](https://wenku.csdn.net/doc/78jta38qbs?spm=1055.2569.3001.10343) 接下来,你可以使用H2O的DataFrame API来加载处理数据。H2O DataFrame是H2O对数据的操作方式,它与Spark DataFrame非常相似,但提供了更多的机器学习功能。加载数据后,你可以使用H2O提供的各种算法,比如GLM、GBM、DRFDL等,来进行数据建模。 在进行模型训练之前,通常需要对数据进行预处理。H2O算法可以直接处理从Spark DataFrame转换而来的H2O DataFrame,无需进行复杂的转换。你可以利用H2O的数据转换功能,如编码、聚合、分割等,来准备训练数据。 训练完成后,可以将模型结果导回Spark环境,用以预测评估。这样,你就可以在Spark环境中无缝使用H2O算法进行机器学习,同时利用Spark的强大数据处理能力。 要深入了解如何在Sparkling Water中集成H2O的机器学习算法,以及如何在分布式团队中协作使用这些工具,推荐阅读这本详细讲解了相关技术的资料:《Sparkling Water 2.0: 深入了解下一代Apache Spark上的机器学习》。该资料将帮助你掌握分布式机器学习项目的关键概念,包括算法的使用、数据处理流程、以及如何将模型部署到生产环境中。 参考资源链接:[Sparkling Water 2.0: 深入了解下一代Apache Spark上的机器学习](https://wenku.csdn.net/doc/78jta38qbs?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值