机器学习(6):聚类算法:K-MEANS算法、DBSCAN算法

目录

一、聚类算法原理

二、K-MEANS算法

2.1 K-MEANS算法基本介绍

2.2   K-MEANS算法过程

三、DBSCAN算法定义

聚类评估:轮廓系数(Silhouette Coefficient )

四、sklearn中的聚类

4.1  K-MEANS

参数:

属性:

方法:

4.2 DBSCAN算法


 

一、聚类算法原理

            对于"监督学习"(supervised learning),其训练样本是带有标记信息的,并且监督学习的目的是:对带有标记的数据集进行模型学习,从而便于对新的样本进行分类。而在“无监督学习”(unsupervised learning)中,训练样本的标记信息是未知的目标是通过对无标记训练样本的学习来揭示数据的内在性质及规律,为进一步的数据分析提供基础。对于无监督学习,应用最广的便是"聚类"(clustering)   

       

二、K-MEANS算法

2.1 K-MEANS算法基本介绍

kmeans算法又名k均值算法。其算法思想大致为:先从样本集中随机选取 kk 个样本作为簇中心,并计算所有样本与这 kk 个“簇中心”的距离,对于每一个样本,将其划分到与其距离最近的“簇中心”所在的簇中,对于新的簇计算各个簇的新的“簇中心”。
  根据以上描述,我们大致可以猜测到实现kmeans算法的主要三点:
  (1)簇个数 kk 的选择
  (2)各个样本点到“簇中心”的距离
  (3)根据新划分的簇,更新“簇中心”

基本概念:
要得到簇的个数,需要指定K值
距离的度量:常用欧几里得距离和余弦相似度(先标准化)
优化目标:
 

2.2   K-MEANS算法过程

工作流程:

 

优势:
简单,快速,适合常规数据集

劣势:
复杂度与样本呈线性关系
很难发现任意形状的簇

例如:

 

三、DBSCAN算法定义

              DBSCAN(Density-Based

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值