rbf核的svm分类学习笔记

  1. C参数代表的是单个样本对分类器的影响
  2. gram参数是控制惩罚阈值范围,即对错误分类的容忍度
  3. 如果最优参数位于搜索范围边界,可以扩大搜索范围继续
  4. gram太大无法防止过度拟合;gram过小无法捕捉数据复杂性
  5. C值较小可以提升模型训练速度
  6. cv即交叉验证,cv的值大小决定了计算速度和精度
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值