1.center函数:
算式:2 * sqrt(r[t] * r[ j])是建立在两个圆外相切的基础上的,由来:
center函数中for循环的意义: 因为不知道现在计算的圆会与哪个圆相切(如果第二个圆足够小,第三个圆足够大,那么第一个圆会与第三个圆相切),所以就得全部遍历一边,取最大的(和不相切的圆用函数中的式子计算会得到较小的结果)
2.compute函数:
compute函数for循环中计算low和high: 在执行这个函数时,我们不知道现在的圆排列情况,所以需要把每个圆都算一遍,来得到左边界(第一个圆心坐标减掉半径长度)和右边界(最后一个圆心坐标加上半径长度),low是最小的,high是最大的,所以只要每次计算完都与之前计算出的最小、最大值比较便可得low和high。
最后圆排列的最小长度便是high - low
3.backtrack函数:
backtrack函数中if语句的作用: 剪枝,当排第t个圆的时候,此时的长度以及比之前全部排完算出的最小长度还大,就不用继续在排下个圆了。回溯算别的排列
代码如下(示例):
import java.util.Scanner;
public class Circle {
/*变量定义*/
static int N; //圆个数
static double minlen = Double.MAX_VALUE; //
static double[] x; //每个圆的圆心横坐标
static int[] r; //圆半径
static int[] tempArr;
/*自定义函数*/
//求第t个圆圆心横坐标
public static double center(int t) {
double temp = 0;
for (int j = 1; j < t; j++) //因为目标圆有可能与排在它之前的任一圆相切,故需一一判断
{
double valueX = x[j] + 2.0 * Math.sqrt(r[t] * r[j]);
if (valueX > temp)
temp = valueX;
}
return temp;
}
//计算圆排列长度
public static void compute() {
double low = 0, high = 0;
for (int i = 1; i <= N; i++) {
low = Math.min(low, x[i] - r[i]);
high = Math.max(x[i] + r[i], high);
}
if (high - low < minlen) {
minlen = high - low;
for (int i = 1; i <= N; i++) {
tempArr[i] = r[i];
}
}
}
//回溯算法
public static void backtrack(int t) {
if (t > N) { //计算排圆列长度
compute();
return;
}
for (int j = t; j <= N; ++j) {
swap(t, j);
double centerX = center(t);
if (centerX + r[t] + r[1] < minlen) {
x[t] = centerX;
backtrack(t + 1); //到第t+1个圆
}
swap(t, j); //不能忘了恢复现场!!
}
}
private static void swap(int a, int b) {
int temp = r[a];
r[a] = r[b];
r[b] = temp;
}
public static void main(String[] args) {
Scanner cin = new Scanner(System.in);
System.out.println("输入圆的数量N:");
N = cin.nextInt();
r = new int[N + 1];
x = new double[N + 1];
tempArr = new int[N + 1];
System.out.println("依次输入圆的半径:");
for (int i = 1; i <= N; i++)
r[i] = cin.nextInt();
backtrack(1);
System.out.println("最小长度的圆排列为(以半径代表圆):");
for (int i = 1; i <= N; i++)
System.out.print(tempArr[i] + " ");
}
}