Tez可以将多个有依赖的作业转换为一个作业,这样只需写一次HDFS,且中间节点较少,从而大大提升作业的计算性能。
MR、Tez、Spark的区别:
Mr引擎:多Job串联,基于磁盘,落盘的地方比较多,虽然慢,但一定能跑出结果,一般处理:周、月、年指标。
Spark引擎:虽然在Shuffle过程中也落盘,但是并不是所有算子都需要Shuffle,尤其是多算子过程,中间过程不落盘,DAG有向无环图兼顾了可靠性和效率,一般处理天指标。
Tez引擎:完全基于内存。注意:如果数据量特别大,慎重使用,容易OOM,一般用于快速出结果且数据量比较小的场景。
本文探讨了Tez、MapReduce(MR)与Spark三种大数据处理引擎的特点及适用场景。Tez通过将多个有依赖的作业转换为单一作业来提高计算效率;MR适用于处理周期较长的任务如周、月度指标;而Spark则通过减少磁盘I/O操作来加速日常指标处理。
1855

被折叠的 条评论
为什么被折叠?



