1,spark基础及体系架构
1.1 spark why?
Apache Spark是一个围绕速度、易用性和复杂分析构建的大数据处理框架,最初在2009年由加州大学伯克利分校的AMPLab开发,并于2010年成为Apache的开源项目之一,与Hadoop和Storm等其他大数据和MapReduce技术相比,Spark有如下优势:
- Spark提供了一个全面、统一的框架用于管理各种有着不同性质(文本数据、图表数据等)的数据集和数据源(批量数据或实时的流数据)的大数据处理的需求
- 官方资料介绍Spark可以将Hadoop集群中的应用在内存中的运行速度提升100倍,甚至能够将应用在磁盘上的运行速度提升10倍
Spark VS MapReduce 迭代计算:
有多个MapReduce任务串联时,依赖HDFS存储中间结果的输出。MapReduce在处理复杂DAG时会带来大量的数据copy、序列化和磁盘I/O开销;
spark处理速度则非常快:
- Spark尽可能减少中间结果写入磁盘
- 尽可能减少不必要的Sort/Shuffle
- 反复用到的数据进行Cache
- 对于DAG进行高度优化
- 划分不同的Stage
- 使用延迟计算技术
1.2 架构及生态
- 通常当需要处理的数据量超过了单机尺度(比如我们的计算机有4GB的内存,而我们需要处理100GB以上的数据)这时我们可以选择spark集群进行计算,有时我们可能需要处理的数据量并不大,但是计算很复杂,需要大量的时间,这时我们也可以选择利用spark集群强大的计算资源,并行化地计算,其架构示意图如下:
- Spark Core:包含Spark的基本功能;尤其是定义RDD的API、操作以及这两者上的动作。其他Spark的库都是构建在RDD和Spark Core之上的
- Spark SQL:提供通过Apache Hive的SQL变体Hive查询语言(HiveQL)与Spark进行交互的API。每个数据库表被当做一个RDD,Spark SQL查询被转换为Spark操作。
- Spark Streaming:对实时数据流进行处理和控制。Spark Streaming允许程序能够像普通RDD一样处理实时数据
- MLlib:一个常用机器学习算法库,算法被实现为对RDD的Spark操作。这个库包含可扩展的学习算法,比如分类、回归等需要对大量数据集进行迭代的操作。
- GraphX:控制图、并行图操作和计算的一组算法和工具的集合。GraphX扩展了RDD API,包含控制图、创建子图、访问路径上所有顶点的操作
Spark架构的组成图如下:
- Cluster Manager:在standalone模式中即为Master主节点,控制整个集群,监控worker。在YARN模式中为资源管理器
- Worker节点:从节点,负责控制计算节点,启动Executor或者Driver。
- Driver: 运行Application 的main()函数
- Executor:执行器,是为某个Application运行在worker node上的一个进程
1.3 spark执行流程
术语解释
- Application: Appliction都是指用户编写的Spark应用程序,其中包括一个Driver功能的代码和分布在集群中多个节点上运行的Executor代码
- Driver: Spark中的Driver即运行上述Application的main函数并创建SparkContext,创建SparkContext的目的是为了准备Spark应用程序的运行环境,在Spark中有SparkContext负责与ClusterManager通信,进行资源申请、任务的分配和监控等,当Executor部分运行完毕后,Driver同时负责将SparkContext关闭,通常用SparkContext代表Driver
- Executor: 某个Application运行在worker节点上的一个进程, 该进程负责运行某些Task, 并且负责将数据存到内存或磁盘上,每个Application都有各自独立的一批Executor, 在Spark on Yarn模式下,其进程名称为CoarseGrainedExecutor Backend。一个CoarseGrainedExecutor Backend有且仅有一个Executor对象, 负责将Task包装成taskRunner,并从线程池中抽取一个空闲线程运行Task, 这个每一个oarseGrainedExecutor Backend能并行运行Task的数量取决与分配给它的cpu个数
- Cluter Manager:指的是在集群上获取资源的外部服务。目前有三种类型
- Standalon : spark原生的资源管理,由Master负责资源的分配
- Apache Mesos:与hadoop MR兼容性良好的一种资源调度框架
- Hadoop Yarn: 主要是指Yarn中的ResourceManager
- Worker: 集群中任何可以运行Application代码的节点,在Standalone模式中指的是通过slave文件配置的Worker节点,在Spark on Yarn模式下就是NoteManager节点
- Task: 被送到某个Executor上的工作单元,但hadoopMR中的MapTask和ReduceTask概念一样,是运行Application的基本单位,多个Task组成一个Stage,而Task的调度和管理等是由TaskScheduler负责
- Job: 包含多个Task组成的并行计算,往往由Spark Action触发生成, 一个Application中往往会产生多个Job
- Stage: 每个Job会被拆分成多组Task, 作为一个TaskSet, 其名称为Stage,Stage的划分和调度是有DAGScheduler来负责的,Stage有非最终的Stage(Shuffle Map Stage)和最终的Stage(Result Stage)两种,Stage的边界就是发生shuffle的地方
- DAGScheduler: 根据Job构建基于Stage的DAG(Directed Acyclic Graph有向无环图),并提交Stage给TASkScheduler。 其划分Stage的依据是RDD之间的依赖的关系找出开销最小的调度方法,如下图