机器学习-线性回归理论笔记

    

 

线性回归:

1、图1、数据(特征(工资、年龄)) 2维      所以对应y为面  

2、目的(预测额度)  y

3、考虑(特征的影响程度(参数))

4、假设\theta_{1}是年龄的参数,\theta_{2}是工资的参数  theta0为偏置项

5、拟合的平面为:  h_{\theta}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}

                           h_{\theta}(x)=\sum_{i=0}^{n} \theta_{i} x_{i}=\theta^{T} x

6、y^{(i)}=\theta^{T} x^{(i)}+\varepsilon^{(i)}        \varepsilon^{(i)}误差项服从高斯分布  高斯分布符合很多事件发生规律 同时样本间相互独立且同分布

     p\left(\epsilon^{(i)}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(\epsilon^{(i)}\right)^{2}}{2 \sigma^{2}}\right)  由于服从高斯分布误差项概率密度函数为该式

    p\left(y^{(i)} | x^{(i)} ; \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right)  误差项替换  

7、利用极大似然估计对theta进行计算  实质点事让上述概率最大化 这样他就越接近于与真值  误差越小实际上概率就越大

接下来是公式推导  实际为大学概率论知识

L(\theta)=\prod_{i=1}^{m} p\left(y^{(i)} | x^{(i)} ; \theta\right)=\prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right)   似然函数

\log L(\theta)=\log \prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right)  对数似然   

\begin{array}{l}{\sum_{i=1}^{m} \log \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right)} \\ {=m \log \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{\sigma^{2}} \cdot \frac{1}{2} \sum_{i=1}^{m}\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}\end{array}    对公式进行化简

J(\theta)=\frac{1}{2} \sum_{i=1}^{m}\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}     最小二乘法    这里实际将问题从极大转换成了求极小  求导前变后不变

\begin{array}{l}{J(\theta)=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2}=\frac{1}{2}(X \theta-y)^{T}(X \theta-y)} \\ {\nabla_{\theta} J(\theta)=\nabla_{\theta}\left(\frac{1}{2}(X \theta-y)^{T}(X \theta-y)\right)=\nabla_{\theta}\left(\frac{1}{2}\left(\theta^{T} X^{T}-y^{T}\right)(X \theta-y)\right)} \\ {=\nabla_{\theta}\left(\frac{1}{2}\left(\theta^{T} X^{T} X \theta-\theta^{T} X^{T} y-y^{T} X \theta+y^{T} y\right)\right)} \\ {=\frac{1}{2}\left(2 X^{T} X \theta-X^{T} y-\left(y^{T} X\right)^{T}\right)=X^{T} X \theta-X^{T} y} \\ { : \widehat{\theta}=\left(X^{T} X\right)^{-1} X^{T} y}\end{array}

这一步实际是(Z0...Zm)(Z0...ZM)^T=累加Z^2(0-m)

最后求偏导另其为0 推出theta的估计值,x,y已知故可求.

8、线性回归能直接求解theta实际为特殊情况,其他都是需要迭代优化的.

9、评估项我们一般使用决定系数           R^{2} : 1-\frac{\sum_{i=1}^{m}\left(\hat{y}_{i}-y_{i}\right)^{2}}{\sum_{i=1}^{m}\left(y_{i}-\overline{y}\right)^{2}}   MSE均方误差  RMSE均方根误差

10、https://www.cnblogs.com/pinard/p/6016029.html  线性回归应用案例

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值