题目描述:
无。
题目分析:
首先,如果没有宗教信仰的限制,即每个旅行者可以在沿途的任何一个城市睡觉。
那么这个问题就是一个树上路径求max&&sum的问题,树剖+线段树
但是现在加入了宗教限制。
观察一下宗教个数,为
105
10
5
.
假如我们开
105
10
5
棵线段树,分别对应每种宗教。
我们在查询的时候就可以在相对应的线段树中进行查询.
然而如果按照满二叉树的方法造线段树,是肯定MLE的。
我们可以对线段树进行动态开点即可。
线段树支持的操作有查询最大值,查询最小值,单点修改。
第一个操作可以直接把原位置的权值变为0,不用打什么删除标记。
题目链接:
AC 代码:
#include <cstdio>
#include <iostream>
#define il inline
const int maxm=1e6+1;
struct tree{
int ls,rs,maxx,sum;
};
int root[maxm],rt;
tree st[maxm*4];
int deep[maxm],son[maxm],fa[maxm],size[maxm],top[maxm];
int head[maxm],to[maxm*2],net[maxm*2],cnt;
int yval[maxm],val[maxm],yc[maxm],c[maxm];
int xz[maxm];
int id[maxm],who[maxm],tot;
il void add_edge(int x,int y)
{
to[++cnt]=y,net[cnt]=head[x],head[x]=cnt;
}
int dfs1(int x,int fax,int dep)
{
fa[x]=fax,deep[x]=dep,size[x]=1;
int maxson=-1;
for(int i=head[x];i;i=net[i])
if(to[i]!=fax)
{
size[x]+=dfs1(to[i],x,dep+1);
if(maxson<size[to[i]]) maxson=size[to[i]],son[x]=to[i];
}
return size[x];
}
void dfs2(int x,int topx)
{
id[x]=++tot;
who[tot]=x;
val[tot]=yval[x],c[tot]=yc[x];
top[x]=topx;
if(!son[x]) return;
dfs2(son[x],topx);
for(int i=head[x];i;i=net[i])
if(!id[to[i]]) dfs2(to[i],to[i]);
}
il void update(int o)
{
st[o].maxx=std::max(st[st[o].ls].maxx,st[st[o].rs].maxx);
st[o].sum=st[st[o].ls].sum+st[st[o].rs].sum;
}
void mofidy(int &o,int l,int r,int ind,int num)
{
if(!o) o=++rt;
if(l>=r)
{
st[o].maxx=st[o].sum=num;
return;
}
int mid=(l+r)>>1;
if(ind<=mid) mofidy(st[o].ls,l,mid,ind,num);
else mofidy(st[o].rs,mid+1,r,ind,num);
update(o);
if(st[o].sum==0) o=0;
}
int askmax(int o,int l,int r,int ql,int qr)
{
if(!o) return -1;
if(r<ql||l>qr) return -1;
if(ql<=l&&r<=qr)
return st[o].maxx;
int mid=(l+r)>>1;
return std::max(askmax(st[o].ls,l,mid,ql,qr),askmax(st[o].rs,mid+1,r,ql,qr));
}
int asksum(int o,int l,int r,int ql,int qr)
{
if(!o) return 0;
if(r<ql||l>qr) return 0;
if(ql<=l&&r<=qr)
return st[o].sum;
int mid=(l+r)>>1;
return asksum(st[o].ls,l,mid,ql,qr)+asksum(st[o].rs,mid+1,r,ql,qr);
}
il int tree_max(int u,int v)
{
int ans=-1;
int xz=yc[v];
while(top[u]!=top[v])
{
if(deep[top[u]]<deep[top[v]]) std::swap(u,v);
ans=std::max(ans,askmax(root[xz],1,tot,id[top[u]],id[u]));
u=fa[top[u]];
}
if(deep[u]<deep[v]) std::swap(u,v);
ans=std::max(ans,askmax(root[xz],1,tot,id[v],id[u]));
return ans;
}
il int tree_sum(int u,int v)
{
int ans=0;
int xz=yc[v];
while(top[u]!=top[v])
{
if(deep[top[u]]<deep[top[v]]) std::swap(u,v);
ans+=asksum(root[xz],1,tot,id[top[u]],id[u]);
u=fa[top[u]];
}
if(deep[u]<deep[v]) std::swap(u,v);
ans+=asksum(root[xz],1,tot,id[v],id[u]);
return ans;
}
il int read()
{
int x=0,w=1;char ch=0;
while(ch<'0'||ch>'9')
{
if(ch=='-') w=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return x*w;
}
int main()
{
int n,q;
n=read(),q=read();
for(int i=1;i<=n;i++)
yval[i]=read(),yc[i]=read();
for(int i=1;i<n;i++)
{
int u=read(),v=read();
add_edge(u,v);
add_edge(v,u);
}
dfs1(1,0,1),dfs2(1,1);
for(int i=1;i<=n;i++)
mofidy(root[yc[who[i]]],1,tot,i,yval[who[i]]);
for(int i=1;i<=q;i++)
{
char s[20];
int x,y;
scanf("%s",s);
x=read(),y=read();
if(s[0]=='C'&&s[1]=='C')
{
mofidy(root[yc[x]],1,tot,id[x],0);
yc[x]=y;
mofidy(root[yc[x]],1,tot,id[x],yval[x]);
}
if(s[0]=='C'&&s[1]=='W')
yval[x]=y,mofidy(root[yc[x]],1,tot,id[x],y);
if(s[0]=='Q'&&s[1]=='M')
printf("%d\n",tree_max(x,y));
if(s[0]=='Q'&&s[1]=='S')
printf("%d\n",tree_sum(x,y));
}
return 0;
}