[CQOI2007]余数求和

题目描述:

求 Ans=(K%1)+(K%2)+…+(K%n)

题目分析:

这题目应该算是数论里比较简单的了
ni=1k mod i ∑ i = 1 n k   m o d   i
我们知道 a%b=a-b*(a/b)
ni=1k mod i=ni=1[ki(k/i)]=nkni=1i(k/i) ∑ i = 1 n k   m o d   i = ∑ i = 1 n [ k − i ∗ ( k / i ) ] = n ∗ k − ∑ i = 1 n i ∗ ( k / i )
数论中枚举形如 n/i的式子时 很大一部分 n/i 是连续不变的 我们可以分块搞 而前面的 i 的和就可以用 等差数列求和公式求出来
分块已经是套路了TAT

题目链接:

BZOJ 1257
Luogu 2261

Ac 代码:

#include <iostream>
#include <cstdio>
#define ll long long
int main()
{
    ll n,k;
    scanf("%lld%lld",&n,&k);
    ll ans=n*k;
    ll last=0;
    for(ll i=1;i<=n;i=last+1)
    {
        if((k/i)!=0) last=std::min(n,(k/(k/i)));
        else last=n;
        ans-=(last-i+1)*(last+i)/2*(k/i);
    }
    printf("%lld\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值